
The HAMMER Filesystem
DragonFlyBSD Project

Matthew Dillon
11 October 2008

●1 Exabyte capacity (2^60 = 1 million terrabytes).
●Fine-grained, live-view history retention for snapshots and undo.
●Fast crash recovery on mount via UNDO FIFO.
●Non-queued mirroring, master-to-many-slaves, slave-to-many-slaves.
●64 bit inodes, 2^63 byte file size limit. Stable inode numbers (never reused).
●Data and meta-data CRCs, non-recursive.
●Pseudo-filesytems with independent inode numbering spaces.
 (For export, backup, mirroring, sub-mounts, and snapshot management).

HAMMER Quick Feature List

HAMMER Media Layout – Zone & Freemap

8M BLOCK (262144x32)LAYER1

8M BLOCK (524288x16)LAYER2

●Layer1 – 4TB/entry (1 Exabyte represented in one 8M block).
●Layer2 – 8MB/entry (4 Gigabytes represented in one 8M block).
●Layer1 blockmaps Layer2. Layer2 direct-maps a 64 bit zone offset.
●The freemap can validate but not translate zone offsets.
●Layer2 – Record zone assignment, append point, bytes free in block
●Recent allocation offsets stored in volume header

ZONE:4 VOLUME:8 OFFSET:52

●Universal Zone offset, 64 bit, byte granular.
●Used everywhere in HAMMER.
●16 zones, Zone 0 is reserved.
●Direct mapped, no block number translation, but zone can be validated.

Freemap

ZONE:4 LAYER1:18 LAYER2:19 BLKOFF:23

HAMMER Media Layout - B-Tree

PARENT ZOFF MIRROR TID
ELM0 ELM1 ELM2 ELM62

BASE

MIRROR TID
SUBTREE ZOFF

BASE

DATA ZOFF
DATA LEN
DATA CRC

16:PFS ID
16:LOCALIZATION
64:OBJ_ID
64:KEY
64:CREATE_TID
[64:DELETE_TID]
16:REC_TYPE
08:OBJ_TYPE
08:BTYPE ('L', 'I', 'R')

B-Tree Node (4K)

Internal Element Leaf Element

●63-Way B-Tree, fat 64-byte B-Tree elements for now, with large keys.
●Used to index EVERYTHING. Inodes, directory entries, data blocks, etc.
●MIRROR_TID used solely to support incremental mirroring streams.
●Localization groups B-Tree elements and related data, e.g. inodes vs file data.
●Both Left and Right-hand bounds for internal nodes (ELM63 does not recurse)
●Searches complicated by CREATE_TID.
●Insertion, Deletion, Update cases – DELETE_TID and snapshot access.

HAMMER Media Layout - Directory

BASE

DATA ZOFF
DATA LEN
DATA CRC

64:KEY (HASH)

08:OBJ_TYPE (D_TYPE)

Leaf Element
64:OBJ_ID (INUM)

NAME
(variable)

Directory Element

●Directories are directly indexed by the B-Tree
●Directory entries not currently embedded in the B-Tree element
●Directory entries are well packed and localized, however.
●B-Tree uses a name hash for the key, but mistakes were made.

REC REC RECREC RECREC REC REC REC

Volume Header

UNDO FIFO

UNDO END

UNDO BEG

HAMMER Media Layout - UNDO

UNDO MAP

UNDO MAP

UNDO MAP

●Fixed blockmap in volume header
●Typically 1G of UNDO space.
●Circular FIFO, synchronized from volume header for
 crash recovery.
●Duplicates filtered out within flush group.

●Frontend VOP operations disconnected from backend Flush.
●Frontend modifying VOP operations 100% logically cached.
●Direct-data bypass for reading and writing – VOP_BMAP works.
●Extent-based data records, but currently limited to 16K/64K.
●Flexible pruning based on transaction id ranges, operates on live filesystem.
●Reblocking of data and meta-data operates on live filesystem.
●Mirroring streams on a per-PFS basis, batch or near real time.

HAMMER Low Level Features

Flush group

INODE

INODE

INODE

HAMMER Media Flush

Flush group

INODE

INODE

INODE

Flush group

INODE

INODE

INODE

DATA METAVOLUME

DATA METAVOLUME

UNDO

DATA METAVOLUME

DISK
FLUSH

DISK
FLUSH

DISK
FLUSH

DISK
FLUSH

DISK
FLUSH

DISK
FLUSH

DISK
FLUSH

UNDO

UNDO

●All operations cached in memory.
●Multiple inodes per flush group.
●Data writes are asynchronous.
●Undo records generated by flush.
●Fsync() is expensive (4 flushes).
●High level of I/O parallelism.
●(See FUTUREs slide)

HAMMER Data Write Bypass

WRITE

Low Level Block Allocator

reservationBUF-CACHE

BUF-CACHE

BUF-CACHE

BUF-CACHE
reservation

reservation

reservation

BMAP

Frontend

FINALIZE

ASYNC
WRITE

Backend

FLUSH

META DATA
UPDATES

WAIT

COLLECT I/O

HAMMER Data Extents
File

16K 16K 16K 64K 64K 64K 64K 64K 64K

1MB

●Each Data record is a B-Tree element.
●Switch to 64K records past 1MB.
●Read code is able to stitch extents together.
●Write code cannot yet handle dynamic extents:

● (1) Breaking up large extents not trivial.
● (2) Historical access & organization not trivial.

●BSD Clustering supported, but it wasn't fun.
●Serious issues with mixed buffer cache operations.

HAMMER Pruning

1:10

●Every B-Tree record has a CREATE_TID and a DELETE_TID.
●CREATE_TID is part of the sorting key, DELETE_TID is not.
●Deletions simply set the DELETE_TID in the existing record.
●Updates set DELETE_TID and insert a new record with new CREATE_TID.
●Transaction ids increase monotonically but do not reflect real time.

10:15 15:22 22:35 35:40 40:48

Snapshot Snapshot Snapshot

1:10 15:22 40:48

●Remaining elements not expanded to fill voids:
● Modifying CREATE_TID interferes with mirroring.
● Modifying CREATE_TID considered too dangerous.
● Once pruned, only snapshot TIDs prior to most recent snapshot are valid.
● Expanding DELETE_TID doesn't work well either.

Before Prune

After Prune

HAMMER Reblocking

8M BIG-BLOCK

FREEMAP

BYTES_FREE

●Allocations are byte granular, but not individually tracked.
●Big-blocks cannot be reused until they are 100% empty.
●Large numbers of deletions can make big-blocks available for re-use.
●Otherwise use reblocking to re-pack data and meta-data into new big-blocks.

HAMMER Mirroring Streams

MIRROR TID

B-Tree internal nodes
M M M...

MIRROR TID

M M M...

MIRROR TID

M M M...

MIRROR TID

M M M...

MIRROR TID

L L L...

MIRROR TID

L L L...

BASE

DATA ZOFF
DATA LEN
DATA CRC

16:PFS ID
16:LOCALIZATION
64:OBJ_ID
64:KEY
64:CREATE_TID
[64:DELETE_TID]
16:REC_TYPE
08:OBJ_TYPE
08:BTYPE ('L', 'I', 'R') Leaf Element

Leaf nodes

MIRROR SCAN UPDATE

HAMMER Mirroring Streams

MIRROR
SOURCE

REC
REC
REC
SKIP
REC
PASS
REC

MIRROR
TARGET

Controls Target Scan

MERGE

REC
REC
REC
REC
REC
REC
REC

REC
REC
REC

Insertion Stream

●Target supplies starting TID to source.
●Source scan based on MIRROR_TID.
●Target scan based on mirroring stream
 from source.
●Mirror target only inserts records, no deletes.
●Mirror target can manage its own snapshots.

HAMMER – Ongoing work

●Add catastrophic recovery scan (2.2).
●Better localization for allocations, and more intelligent reblocking.
●Possible expansion of B-Tree from 63-way to 255-way.
●Adjust directory hash from straight crc to semi-ordered + crc (2.2).
●Implement forward log for short lseek+write+fsync sequences.
●Serialize UNDO buffers to avoid volume header update.
●Give each PFS its own B-Tree to improve integrity.
●Dynamic data extents.
●Support direct data overwrite for things like swap, memory files.
●Ability to add, remove, expand, and contract volumes while live.
●Shared data references (efficient cp, tree duplication, etc).
●Support recursive CRC on B-Tree when filesystem integrity
 is paramount. Expansion of MIRROR_TID algorithm.
●Ultimate Goal for DragonFly – network-clustered / multi-master
 replication.

M1

Quorum Protocol Basics

M2

M3 M4

M5

S

S

●Quorum is any 3 out of 5 masters in example.
●Once you have a quorum you can ignore any others.
●Robust: Can query all 5 and take first three responders.
●Can be used for transaction and locking protocols.
●Modifications need only be made to 3 masters.
●Multi-master replication to synchronize all nodes.
●Bulk data can be tagged, quorum operations can agree
 on the tag, then the data can be retrieved from ANY
 single node containing that tag.
●Robust: Can retrieve from multiple nodes and take first responder.

HAMMER's Final Goal

FS OP (READ) CCMS
QUORUM
ACQUIRE

TID

GET BULK
DATA

FS OP (WRITE) CCMS
QUORUM
ACQUIRE

TID

QUORUM
COMMIT

M

M M

M

M
S S

S

S
S

●Bulk synchronization can be handled by existing
 mirroring protocols.
●HAMMER transaction id (TID) is the data tag.
●All quorum protocol features are supportable.
●Rules can be loosened depending on application.
●Cache Coherency protocols will be very complex.
●VFS Quorum protocols will be very complex.

	Dias 1
	Dias 2
	Dias 3
	Dias 4
	Dias 5
	Dias 6
	Dias 7
	Dias 8
	Dias 9
	Dias 10
	Dias 11
	Dias 12
	Dias 13
	Dias 14
	Dias 15
	Dias 16
	Dias 17

