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●1 Exabyte capacity (2^60 = 1 million terrabytes).
●Fine-grained, live-view history retention for snapshots and undo.
●Fast crash recovery on mount via UNDO FIFO.
●Non-queued mirroring, master-to-many-slaves, slave-to-many-slaves.
●64 bit inodes, 2^63 byte file size limit.  Stable inode numbers (never reused).
●Data and meta-data CRCs, non-recursive.
●Pseudo-filesytems with independent inode numbering spaces.
  (For export, backup, mirroring, sub-mounts, and snapshot management).

HAMMER Quick Feature List



HAMMER Media Layout – Zone & Freemap

8M BLOCK (262144x32)LAYER1

8M BLOCK (524288x16)LAYER2

●Layer1 – 4TB/entry (1 Exabyte represented in one 8M block).
●Layer2 – 8MB/entry (4 Gigabytes represented in one 8M block).
●Layer1 blockmaps Layer2.  Layer2 direct-maps a 64 bit zone offset.
●The freemap can validate but not translate zone offsets.
●Layer2 – Record zone assignment, append point, bytes free in block
●Recent allocation offsets stored in volume header

ZONE:4  VOLUME:8 OFFSET:52

●Universal Zone offset, 64 bit, byte granular.
●Used everywhere in HAMMER.
●16 zones, Zone 0 is reserved.
●Direct mapped, no block number translation, but zone can be validated.

Freemap

ZONE:4 LAYER1:18 LAYER2:19 BLKOFF:23



HAMMER Media Layout - B-Tree

PARENT ZOFF MIRROR TID
ELM0 ELM1 ELM2 ELM62

BASE

MIRROR TID
SUBTREE ZOFF

BASE

DATA ZOFF
DATA LEN
DATA CRC

16:PFS ID
16:LOCALIZATION
64:OBJ_ID
64:KEY
64:CREATE_TID
[64:DELETE_TID]
16:REC_TYPE
08:OBJ_TYPE
08:BTYPE ('L', 'I', 'R') 

B-Tree Node (4K)

Internal Element Leaf Element

●63-Way B-Tree, fat 64-byte B-Tree elements for now, with large keys.
●Used to index EVERYTHING.  Inodes, directory entries, data blocks, etc.
●MIRROR_TID used solely to support incremental mirroring streams.
●Localization groups B-Tree elements and related data, e.g. inodes vs file data.
●Both Left and Right-hand bounds for internal nodes (ELM63 does not recurse)
●Searches complicated by CREATE_TID.
●Insertion, Deletion, Update cases – DELETE_TID and snapshot access.



HAMMER Media Layout - Directory

BASE

DATA ZOFF
DATA LEN
DATA CRC

64:KEY (HASH)

08:OBJ_TYPE (D_TYPE)

Leaf Element
64:OBJ_ID (INUM)

NAME
(variable)

Directory Element

●Directories are directly indexed by the B-Tree
●Directory entries not currently embedded in the B-Tree element
●Directory entries are well packed and localized, however.
●B-Tree uses a name hash for the key, but mistakes were made.



REC REC RECREC RECREC REC REC REC

Volume Header

UNDO FIFO

UNDO END

UNDO BEG

HAMMER Media Layout - UNDO

UNDO MAP

UNDO MAP

UNDO MAP

●Fixed blockmap in volume header
●Typically 1G of UNDO space.
●Circular FIFO, synchronized from volume header for
  crash recovery.
●Duplicates filtered out within flush group.



●Frontend VOP operations disconnected from backend Flush.
●Frontend modifying VOP operations 100% logically cached.
●Direct-data bypass for reading and writing – VOP_BMAP works.
●Extent-based data records, but currently limited to 16K/64K.
●Flexible pruning based on transaction id ranges, operates on live filesystem.
●Reblocking of data and meta-data operates on live filesystem.
●Mirroring streams on a per-PFS basis, batch or near real time.

HAMMER Low Level Features



Flush group
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INODE

HAMMER Media Flush
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●All operations cached in memory.
●Multiple inodes per flush group.
●Data writes are asynchronous.
●Undo records generated by flush.
●Fsync() is expensive (4 flushes).
●High level of I/O parallelism.
●(See FUTUREs slide)



HAMMER Data Write Bypass
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HAMMER Data Extents
File

16K 16K 16K 64K 64K 64K 64K 64K 64K ......

1MB

●Each Data record is a B-Tree element.
●Switch to 64K records past 1MB.
●Read code is able to stitch extents together.
●Write code cannot yet handle dynamic extents:

● (1) Breaking up large extents not trivial.
● (2) Historical access & organization not trivial.

●BSD Clustering supported, but it wasn't fun.
●Serious issues with mixed buffer cache operations.



HAMMER Pruning

1:10

●Every B-Tree record has a CREATE_TID and a DELETE_TID.
●CREATE_TID is part of the sorting key, DELETE_TID is not.
●Deletions simply set the DELETE_TID in the existing record.
●Updates set DELETE_TID and insert a new record with new CREATE_TID.
●Transaction ids increase monotonically but do not reflect real time.

10:15 15:22 22:35 35:40 40:48

Snapshot Snapshot Snapshot

1:10 15:22 40:48

●Remaining elements not expanded to fill voids:
● Modifying CREATE_TID interferes with mirroring.
● Modifying CREATE_TID considered too dangerous.
● Once pruned, only snapshot TIDs prior to most recent snapshot are valid.
● Expanding DELETE_TID doesn't work well either.

Before Prune

After Prune



HAMMER Reblocking

8M BIG-BLOCK

FREEMAP

BYTES_FREE

●Allocations are byte granular, but not individually tracked.
●Big-blocks cannot be reused until they are 100% empty.
●Large numbers of deletions can make big-blocks available for re-use.
●Otherwise use reblocking to re-pack data and meta-data into new big-blocks.



HAMMER Mirroring Streams

MIRROR TID

B-Tree internal nodes
M M M...

MIRROR TID

M M M...

MIRROR TID

M M M...
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M M M...

MIRROR TID

L L L...
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L L L...

BASE

DATA ZOFF
DATA LEN
DATA CRC

16:PFS ID
16:LOCALIZATION
64:OBJ_ID
64:KEY
64:CREATE_TID
[64:DELETE_TID]
16:REC_TYPE
08:OBJ_TYPE
08:BTYPE ('L', 'I', 'R') Leaf Element

Leaf nodes

MIRROR SCAN UPDATE



HAMMER Mirroring Streams
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Insertion Stream

●Target supplies starting TID to source.
●Source scan based on MIRROR_TID.
●Target scan based on mirroring stream
  from source.
●Mirror target only inserts records, no deletes.
●Mirror target can manage its own snapshots.



HAMMER – Ongoing work

●Add catastrophic recovery scan (2.2).
●Better localization for allocations, and more intelligent reblocking.
●Possible expansion of B-Tree from 63-way to 255-way.
●Adjust directory hash from straight crc to semi-ordered + crc (2.2).
●Implement forward log for short lseek+write+fsync sequences.
●Serialize UNDO buffers to avoid volume header update.
●Give each PFS its own B-Tree to improve integrity.
●Dynamic data extents.
●Support direct data overwrite for things like swap, memory files.
●Ability to add, remove, expand, and contract volumes while live.
●Shared data references (efficient cp, tree duplication, etc).
●Support recursive CRC on B-Tree when filesystem integrity
  is paramount.  Expansion of MIRROR_TID algorithm.
●Ultimate Goal for DragonFly – network-clustered / multi-master
  replication.



M1

Quorum Protocol Basics

M2

M3 M4

M5

S

S

●Quorum is any 3 out of 5 masters in example.
●Once you have a quorum you can ignore any others.
●Robust:  Can query all 5 and take first three responders.
●Can be used for transaction and locking protocols.
●Modifications need only be made to 3 masters.
●Multi-master replication to synchronize all nodes.
●Bulk data can be tagged, quorum operations can agree
  on the tag, then the data can be retrieved from ANY
  single node containing that tag.
●Robust: Can retrieve from multiple nodes and take first responder.



HAMMER's Final Goal
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●Bulk synchronization can be handled by existing
 mirroring protocols.
●HAMMER transaction id (TID) is the data tag.
●All quorum protocol features are supportable.
●Rules can be loosened depending on application.
●Cache Coherency protocols will be very complex.
●VFS Quorum protocols will be very complex.
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