The HAMMER Filesystem
DragonFlyBSD Project
Matthew Dillon
11 October 2008

HAMMER Quick Feature List

] Exabyte capacity (260 = 1 million terrabytes).
*Fine-grained, live-view history retention for snapshots and undo.
*Fast crash recovery on mount via UNDO FIFO.
*Non-queued mirroring, master-to-many-slaves, slave-to-many-slaves.
*64 bit inodes, 2763 byte file size limit. Stable inode numbers (never reused).
eData and meta-data CRCs, non-recursive.
*Pseudo-filesytems with independent inode numbering spaces.
(For export, backup, mirroring, sub-mounts, and snapshot management).

HAMMER Media Layout — Zone & Freemap

ZONE:4 VOLUME:8 OFFSET:52

eUniversal Zone offset, 64 bit, byte granular.

*Used everywhere in HAMMER.

*16 zones, Zone 0 1s reserved.

*Direct mapped, no block number translation, but zone can be validated.

ZONE:4 LAYERI:18 LAYER2:19 BLKOFF:23

LAYERI Freemap

eLayer]l — 4TB/entry (1 Exabyte represented in one 8M block).
eLayer2 — 8MB/entry (4 Gigabytes represented in one 8M block).
eLayer] blockmaps Layer2. Layer2 direct-maps a 64 bit zone offset.
*The freemap can validate but not translate zone offsets.

e[Layer2 — Record zone assignment, append point, bytes free in block
*Recent allocation offsets stored in volume header

HAMMER Media Layout - B-Tree

*63-Way B-Tree, fat 64-byte B-Tree elements for now, with large keys.

*Used to index EVERYTHING. Inodes, directory entries, data blocks, etc.
*MIRROR TID used solely to support incremental mirroring streams.
[ocalization groups B-Tree elements and related data, e.g. inodes vs file data.
*Both Left and Right-hand bounds for internal nodes (ELM63 does not recurse)
*Searches complicated by CREATE_TID.
Insertion, Deletion, Update cases — DELETE TID and snapshot access.

PARENT ZOFF MIRROR TID
ELMO | ELM1 | ELM2 ELM62
BASE BASE
MIRROR TID DATA ZOFF
SUBTREE ZOFF DATA LEN
DATA CRC
Internal Element Leaf Element

B-Tree Node (4K)

16:PFS ID
16:LOCALIZATION
64:0BJ ID

64:KEY

64:CREATE TID
[64:DELETE TID]
16:REC_TYPE
08:0BJ TYPE
08:BTYPE ('L, 'T', 'R")

HAMMER Media Layout - Directory

*Directories are directly indexed by the B-Tree

*Directory entries not currently embedded in the B-Tree element
*Directory entries are well packed and localized, however.
*B-Tree uses a name hash for the key, but mistakes were made.

64:KEY (HASH)

BASE
DATA ZOFF 08:0BJ TYPE (D TYPE)
DATA LEN
DATA CRC 64:0BJ_ID (INUM)

Leaf Element
—Pp NAME
(variable)

Directory Element

Volume Header

HAMMER Media Layout - UNDO

*Fixed blockmap in volume header

UNDO MAP *Typically 1G of UNDO space.
UNDO MAP Circular FIFO, synchronized from volume header for
crash recovery.
UNDO MAP *Duplicates filtered out within flush group.
UNDO BEG
UNDO END
REC REC REC REC REC REC | REC | REC REC

UNDO FIFO

HAMMER Low Level Features

*Frontend VOP operations disconnected from backend Flush.

*Frontend modifying VOP operations 100% logically cached.

*Direct-data bypass for reading and writing — VOP_BMAP works.
eExtent-based data records, but currently limited to 16K/64K.

*Flexible pruning based on transaction id ranges, operates on live filesystem.
*Reblocking of data and meta-data operates on live filesystem.

eMirroring streams on a per-PFS basis, batch or near real time.

HAMMER Media Flush

*All operations cached in memory.

Flush group Flush group Flush group *Multiple inodes per flush group.
eData writes are asynchronous.
INODE INODE INODE *Undo records generated by flush.
INODE INODE INODE *Fsync() is expensive (4 flushes).
| 3 | *High level of I/O parallelism.
| | ‘ *(See FUTURE:S slide)
INODE INODE INODE
DATA VOLUME META
UNDO DATA | VOLUME META
UNDO DATA | VOLUME META
UNDO

\ \

\ \

DISK DISK DISK

DISK

\ \

DISK

\

DISK DISK

FLUSH FLUSH FLUSH FLUSH FLUSH FLUSH FLUSH

Frontend

HAMMER Data Write Bypass

Backend

BUF-CACHE .
reservation
BUF-CACHE .
reservation
BUF-CACHE e
reservation
BUF-CACHE .
i reservation
ASYNC META DATA
WRITE UPDATES

L bmar |

Cenauze 4 FLUSH

> COLLECT1O|

Low Level Block Allocator

i

HAMMER Data Extents

File
16K 16K | ... 16K | 64K | 64K 64K | 64K | 64K 64K | ...

IMB

eEach Data record is a B-Tree element.
*Switch to 64K records past IMB.
*Read code is able to stitch extents together.
*Write code cannot yet handle dynamic extents:

* (1) Breaking up large extents not trivial.

 (2) Historical access & organization not trivial.
*BSD Clustering supported, but it wasn't fun.
Serious issues with mixed buffer cache operations.

HAMMER Pruning

eEvery B-Tree record has a CREATE TID and a DELETE_TID.
*CREATE_TID is part of the sorting key, DELETE_TID i1s not.

*Deletions simply set the DELETE TID in the existing record.

*Updates set DELETE TID and insert a new record with new CREATE TID.
*Transaction 1ds increase monotonically but do not reflect real time.

1:10 10:15 1522 | 22:35 | 35:40 | 40:48 Before Prune
\ \ \
Snapshot Snapshot Snapshot
Y Y Y
1:10 15:22 40:48 After Prune

*Remaining elements not expanded to fill voids:
* Modifying CREATE TID interferes with mirroring.
* Modifying CREATE TID considered too dangerous.
e Once pruned, only snapshot TIDs prior to most recent snapshot are valid.
* Expanding DELETE TID doesn't work well either.

HAMMER Reblocking

BYTES FREE

FREEMAP

8M BIG-BLOCK

Allocations are byte granular, but not individually tracked.

*Big-blocks cannot be reused until they are 100% empty.

e[arge numbers of deletions can make big-blocks available for re-use.
*Otherwise use reblocking to re-pack data and meta-data into new big-blocks.

HAMMER Mirroring Streams

MIRROR SCAN MIRROR TID UPDATE
M M| .. M
B-Tree internal S / \
MIRROR TID MIRROR TID MIRROR TID
M M M M M| .. M M M| .. M
MIRROR TID MIRROR TID
O O Leaf nodes
L L L L L L
16:PFS ID
16:LOCALIZATION
BASE 64IOBJ_ID
64:KEY
DATA ZOFF 64:CREATE_TID
DATA LEN [64:DELETE TID]
DATA CRC 16:REC _TYPE
08:0BJ_TYPE

Leaf Element

08:BTYPE (L', T, R")

HAMMER Mirroring Streams

REC REC
REC REC
REC REC
SKIP Controls Target Scan REC
REC REC
PASS REC
REC REC

Insertion Stream

REC

REC
REC

*Target supplies starting TID to source.
*Source scan based on MIRROR_TID.
*Target scan based on mirroring stream

from source.
eMirror target only inserts records, no deletes.
eMirror target can manage 1ts own snapshots.

HAMMER — Ongoing work

*Add catastrophic recovery scan (2.2).
eBetter localization for allocations, and more intelligent reblocking.
*Possible expansion of B-Tree from 63-way to 255-way.
*Adjust directory hash from straight crc to semi-ordered + crc (2.2).
eImplement forward log for short Iseek+write+fsync sequences.
*Serialize UNDO buffers to avoid volume header update.
*Give each PFS its own B-Tree to improve integrity.
*Dynamic data extents.
*Support direct data overwrite for things like swap, memory files.
Ability to add, remove, expand, and contract volumes while live.
eShared data references (efficient cp, tree duplication, etc).
*Support recursive CRC on B-Tree when filesystem integrity
1s paramount. Expansion of MIRROR TID algorithm.
eUltimate Goal for DragonFly — network-clustered / multi-master
replication.

Quorum Protocol Basics

()

*Quorum is any 3 out of 5 masters in example.
*Once you have a quorum you can ignore any others.
*Robust: Can query all 5 and take first three responders.
*Can be used for transaction and locking protocols.
*Modifications need only be made to 3 masters.
eMulti-master replication to synchronize all nodes.
*Bulk data can be tagged, quorum operations can agree
on the tag, then the data can be retrieved from ANY
single node containing that tag.
*Robust: Can retrieve from multiple nodes and take first responder.

HAMMER's Final Goal

*Bulk synchronization can be handled by existing
mirroring protocols.

*HAMMER transaction id (TID) is the data tag.
*All quorum protocol features are supportable.
*Rules can be loosened depending on application.
*Cache Coherency protocols will be very complex.
*VFS Quorum protocols will be very complex.

	Dias 1
	Dias 2
	Dias 3
	Dias 4
	Dias 5
	Dias 6
	Dias 7
	Dias 8
	Dias 9
	Dias 10
	Dias 11
	Dias 12
	Dias 13
	Dias 14
	Dias 15
	Dias 16
	Dias 17

