Project

General

Profile

Bug #1617 ยป m_dragonfly_w_cleanup.patch

lentferj, 12/05/2009 10:29 AM

View differences:

usr.bin/top/m_dragonfly.c
/*
* top - a top users display for Unix
*
*
* SYNOPSIS: For DragonFly 2.x and later
*
* DESCRIPTION:
* Originally written for BSD4.4 system by Christos Zoulas.
* Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
* Order support hacked in from top-3.5beta6/machine/m_aix41.c
* by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
*
* This is the machine-dependent module for DragonFly 2.5.1
* Should work for:
* DragonFly 2.x and above
*
*
* DESCRIPTION: Originally written for BSD4.4 system by Christos Zoulas. Ported
* to FreeBSD 2.x by Steven Wallace && Wolfram Schneider Order support hacked
* in from top-3.5beta6/machine/m_aix41.c by Monte Mitzelfelt (for latest top
* see http://www.groupsys.com/topinfo/)
*
* This is the machine-dependent module for DragonFly 2.5.1 Should work for:
* DragonFly 2.x and above
*
* LIBS: -lkvm
*
*
* AUTHOR: Jan Lentfer <Jan.Lentfer@web.de>
* This module has been put together from different sources and is based on the
* work of many other people, e.g. Matthew Dillon, Simon Schubert, Jordan Gordeev.
*
* This module has been put together from different sources and is based on
* the work of many other people, e.g. Matthew Dillon, Simon Schubert,
* Jordan Gordeev.
*
* $FreeBSD: src/usr.bin/top/machine.c,v 1.29.2.2 2001/07/31 20:27:05 tmm Exp $
* $DragonFly: src/usr.bin/top/machine.c,v 1.26 2008/10/16 01:52:33 swildner Exp $
* $DragonFly: src/usr.bin/top/machine.c,v 1.26 2008/10/16 01:52:33 swildner
* Exp $
*/
......
#include <stdio.h>
#include <sys/conf.h>
#include <osreldate.h> /* for changes in kernel structures */
#include <osreldate.h> /* for changes in kernel structures */
#include <sys/kinfo.h>
#include <kinfo.h>
......
#include "screen.h"
#include "utils.h"
#if 0
static int check_nlist(struct nlist *);
static int getkval(unsigned long, int *, int, char *);
#endif
int swapmode(int *retavail, int *retfree);
static int smpmode;
static int namelength;
......
int n_cpus = 0;
/*
* needs to be a global symbol, so wrapper can be
* modified accordingly.
/*
* needs to be a global symbol, so wrapper can be modified accordingly.
*/
static int show_threads = 0;
/* get_process_info passes back a handle. This is what it looks like: */
struct handle
{
struct kinfo_proc **next_proc; /* points to next valid proc pointer */
int remaining; /* number of pointers remaining */
struct handle {
struct kinfo_proc **next_proc; /* points to next valid proc pointer */
int remaining; /* number of pointers remaining */
};
/* declarations for load_avg */
......
#define PROCSIZE(pp) (VP((pp), map_size) / 1024)
/*
* These definitions control the format of the per-process area
* These definitions control the format of the per-process area
*/
static char smp_header[] =
" PID %-*.*s PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND";
" PID %-*.*s PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND";
#define smp_Proc_format \
"%5d %-*.*s %3d %3d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s"
static char up_header[] =
" PID %-*.*s PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND";
" PID %-*.*s PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND";
#define up_Proc_format \
"%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s"
......
/* process state names for the "STATE" column of the display */
/* the extra nulls in the string "run" are for adding a slash and
the processor number when needed */
/*
* the extra nulls in the string "run" are for adding a slash and the
* processor number when needed
*/
const char *state_abbrev[] =
{
"", "RUN\0\0\0", "STOP", "SLEEP",
const char *state_abbrev[] = {
"", "RUN\0\0\0", "STOP", "SLEEP",
};
......
int process_states[6];
char *procstatenames[] = {
"", " starting, ", " running, ", " sleeping, ", " stopped, ",
" zombie, ",
NULL
"", " starting, ", " running, ", " sleeping, ", " stopped, ",
" zombie, ",
NULL
};
/* these are for detailing the cpu states */
#define CPU_STATES 5
int *cpu_states;
char *cpustatenames[CPU_STATES + 1] = {
"user", "nice", "system", "interrupt", "idle", NULL
"user", "nice", "system", "interrupt", "idle", NULL
};
/* these are for detailing the memory statistics */
long memory_stats[7];
char *memorynames[] = {
"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
NULL
"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
NULL
};
long swap_stats[7];
char *swapnames[] = {
/* 0 1 2 3 4 5 */
"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
NULL
/* 0 1 2 3 4 5 */
"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
NULL
};
......
/* sorting orders. first is default */
char *ordernames[] = {
"cpu", "size", "res", "time", "pri", "thr", NULL
"cpu", "size", "res", "time", "pri", "thr", NULL
};
/* compare routines */
int proc_compare(), compare_size(), compare_res(), compare_time(), compare_prio(), compare_thr();
int (*proc_compares[])() = {
int (*proc_compares[]) () = {
proc_compare,
compare_size,
compare_res,
......
static void
cputime_percentages(int out[CPU_STATES], struct kinfo_cputime *new,
struct kinfo_cputime *old)
struct kinfo_cputime *old)
{
struct kinfo_cputime diffs;
struct kinfo_cputime diffs;
uint64_t total_change, half_total;
/* initialization */
/* initialization */
total_change = 0;
diffs.cp_user = new->cp_user - old->cp_user;
diffs.cp_user = new->cp_user - old->cp_user;
diffs.cp_nice = new->cp_nice - old->cp_nice;
diffs.cp_sys = new->cp_sys - old->cp_sys;
diffs.cp_intr = new->cp_intr - old->cp_intr;
diffs.cp_idle = new->cp_idle - old->cp_idle;
diffs.cp_intr = new->cp_intr - old->cp_intr;
diffs.cp_idle = new->cp_idle - old->cp_idle;
total_change = diffs.cp_user + diffs.cp_nice + diffs.cp_sys +
diffs.cp_intr + diffs.cp_idle;
old->cp_user = new->cp_user;
old->cp_nice = new->cp_nice;
old->cp_sys = new->cp_sys;
old->cp_intr = new->cp_intr;
diffs.cp_intr + diffs.cp_idle;
old->cp_user = new->cp_user;
old->cp_nice = new->cp_nice;
old->cp_sys = new->cp_sys;
old->cp_intr = new->cp_intr;
old->cp_idle = new->cp_idle;
/* avoid divide by zero potential */
/* avoid divide by zero potential */
if (total_change == 0)
total_change = 1;
/* calculate percentages based on overall change, rounding up */
half_total = total_change >> 1;
half_total = total_change >> 1;
out[0] = ((diffs.cp_user * 1000LL + half_total) / total_change);
out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change);
out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change);
out[2] = ((diffs.cp_sys * 1000LL + half_total) / total_change);
out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change);
out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change);
out[4] = ((diffs.cp_idle * 1000LL + half_total) / total_change);
}
int
machine_init(struct statics *statics)
{
int pagesize;
size_t modelen;
struct passwd *pw;
int pagesize;
size_t modelen;
struct passwd *pw;
struct timeval boottime;
if (n_cpus < 1) {
if (kinfo_get_cpus(&n_cpus))
err(1, "kinfo_get_cpus failed");
}
if (n_cpus < 1) {
if (kinfo_get_cpus(&n_cpus))
err(1, "kinfo_get_cpus failed");
}
/* get boot time */
modelen = sizeof(boottime);
if (sysctlbyname("kern.boottime", &boottime, &modelen, NULL, 0) == -1) {
/* we have no boottime to report */
boottime.tv_sec = -1;
}
modelen = sizeof(smpmode);
if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) ||
modelen != sizeof(smpmode))
smpmode = 0;
while ((pw = getpwent()) != NULL) {
if ((int)strlen(pw->pw_name) > namelength)
namelength = strlen(pw->pw_name);
}
if (namelength < 8)
namelength = 8;
if (smpmode && namelength > 13)
namelength = 13;
else if (namelength > 15)
namelength = 15;
if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL)
return -1;
if (kinfo_get_sched_ccpu(&ccpu)) {
fprintf(stderr, "top: kinfo_get_sched_ccpu failed\n");
return (-1);
}
/* this is used in calculating WCPU -- calculate it ahead of time */
logcpu = log(loaddouble(ccpu));
pbase = NULL;
pref = NULL;
nproc = 0;
onproc = -1;
/*
* get the page size with "getpagesize" and calculate pageshift from
* it
*/
pagesize = getpagesize();
pageshift = 0;
while (pagesize > 1) {
pageshift++;
pagesize >>= 1;
}
/* we only need the amount of log(2)1024 for our conversion */
pageshift -= LOG1024;
/* fill in the statics information */
statics->procstate_names = procstatenames;
statics->cpustate_names = cpustatenames;
statics->memory_names = memorynames;
statics->boottime = boottime.tv_sec;
statics->swap_names = swapnames;
statics->order_names = ordernames;
modelen = sizeof(smpmode);
if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) ||
modelen != sizeof(smpmode))
smpmode = 0;
while ((pw = getpwent()) != NULL) {
if ((int)strlen(pw->pw_name) > namelength)
namelength = strlen(pw->pw_name);
}
if (namelength < 8)
namelength = 8;
if (smpmode && namelength > 13)
namelength = 13;
else if (namelength > 15)
namelength = 15;
if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL)
return -1;
if (kinfo_get_sched_ccpu(&ccpu)) {
fprintf(stderr, "top: kinfo_get_sched_ccpu failed\n");
return(-1);
}
/* this is used in calculating WCPU -- calculate it ahead of time */
logcpu = log(loaddouble(ccpu));
pbase = NULL;
pref = NULL;
nproc = 0;
onproc = -1;
/* get the page size with "getpagesize" and calculate pageshift from it */
pagesize = getpagesize();
pageshift = 0;
while (pagesize > 1)
{
pageshift++;
pagesize >>= 1;
}
/* we only need the amount of log(2)1024 for our conversion */
pageshift -= LOG1024;
/* fill in the statics information */
statics->procstate_names = procstatenames;
statics->cpustate_names = cpustatenames;
statics->memory_names = memorynames;
statics->boottime = boottime.tv_sec;
statics->swap_names = swapnames;
statics->order_names = ordernames;
/* all done! */
return(0);
/* all done! */
return (0);
}
char *
format_header(char *uname_field)
{
static char Header[128];
static char Header[128];
snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
namelength, namelength, uname_field);
snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
namelength, namelength, uname_field);
if (screen_width <= 79)
cmdlength = 80;
else
cmdlength = 89;
if (screen_width <= 79)
cmdlength = 80;
else
cmdlength = 89;
cmdlength = cmdlength - strlen(Header) + 6;
cmdlength = cmdlength - strlen(Header) + 6;
return Header;
return Header;
}
static int swappgsin = -1;
......
void
get_system_info(struct system_info *si)
{
size_t len;
int cpu;
if (cpu_states == NULL) {
cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus);
if (cpu_states == NULL)
err(1, "malloc");
bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus);
}
if (cp_time == NULL) {
cp_time = malloc(2 * n_cpus * sizeof(cp_time[0]));
if (cp_time == NULL)
err(1, "cp_time");
cp_old = cp_time + n_cpus;
len = n_cpus * sizeof(cp_old[0]);
bzero(cp_time, len);
if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0))
err(1, "kern.cputime");
}
len = n_cpus * sizeof(cp_time[0]);
bzero(cp_time, len);
if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0))
err(1, "kern.cputime");
getloadavg(si->load_avg, 3);
lastpid = 0;
/* convert cp_time counts to percentages */
for (cpu = 0; cpu < n_cpus; ++cpu) {
cputime_percentages(cpu_states + cpu * CPU_STATES,
&cp_time[cpu], &cp_old[cpu]);
}
/* sum memory & swap statistics */
{
struct vmmeter vmm;
struct vmstats vms;
size_t vms_size = sizeof(vms);
size_t vmm_size = sizeof(vmm);
static unsigned int swap_delay = 0;
static int swapavail = 0;
static int swapfree = 0;
static int bufspace = 0;
if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0))
err(1, "sysctlbyname: vm.vmstats");
if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0))
err(1, "sysctlbyname: vm.vmmeter");
if (kinfo_get_vfs_bufspace(&bufspace))
err(1, "kinfo_get_vfs_bufspace");
/* convert memory stats to Kbytes */
memory_stats[0] = pagetok(vms.v_active_count);
memory_stats[1] = pagetok(vms.v_inactive_count);
memory_stats[2] = pagetok(vms.v_wire_count);
memory_stats[3] = pagetok(vms.v_cache_count);
memory_stats[4] = bufspace / 1024;
memory_stats[5] = pagetok(vms.v_free_count);
memory_stats[6] = -1;
/* first interval */
if (swappgsin < 0) {
swap_stats[4] = 0;
swap_stats[5] = 0;
}
/* compute differences between old and new swap statistic */
else {
swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin)));
swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout)));
size_t len;
int cpu;
if (cpu_states == NULL) {
cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus);
if (cpu_states == NULL)
err(1, "malloc");
bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus);
}
if (cp_time == NULL) {
cp_time = malloc(2 * n_cpus * sizeof(cp_time[0]));
if (cp_time == NULL)
err(1, "cp_time");
cp_old = cp_time + n_cpus;
len = n_cpus * sizeof(cp_old[0]);
bzero(cp_time, len);
if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0))
err(1, "kern.cputime");
}
len = n_cpus * sizeof(cp_time[0]);
bzero(cp_time, len);
if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0))
err(1, "kern.cputime");
swappgsin = vmm.v_swappgsin;
swappgsout = vmm.v_swappgsout;
getloadavg(si->load_avg, 3);
/* call CPU heavy swapmode() only for changes */
if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
swap_stats[3] = swapmode(&swapavail, &swapfree);
swap_stats[0] = swapavail;
swap_stats[1] = swapavail - swapfree;
swap_stats[2] = swapfree;
lastpid = 0;
/* convert cp_time counts to percentages */
for (cpu = 0; cpu < n_cpus; ++cpu) {
cputime_percentages(cpu_states + cpu * CPU_STATES,
&cp_time[cpu], &cp_old[cpu]);
}
swap_delay = 1;
swap_stats[6] = -1;
}
/* set arrays and strings */
si->cpustates = cpu_states;
si->memory = memory_stats;
si->swap = swap_stats;
/* sum memory & swap statistics */
{
struct vmmeter vmm;
struct vmstats vms;
size_t vms_size = sizeof(vms);
size_t vmm_size = sizeof(vmm);
static unsigned int swap_delay = 0;
static int swapavail = 0;
static int swapfree = 0;
static int bufspace = 0;
if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0))
err(1, "sysctlbyname: vm.vmstats");
if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0))
err(1, "sysctlbyname: vm.vmmeter");
if (kinfo_get_vfs_bufspace(&bufspace))
err(1, "kinfo_get_vfs_bufspace");
/* convert memory stats to Kbytes */
memory_stats[0] = pagetok(vms.v_active_count);
memory_stats[1] = pagetok(vms.v_inactive_count);
memory_stats[2] = pagetok(vms.v_wire_count);
memory_stats[3] = pagetok(vms.v_cache_count);
memory_stats[4] = bufspace / 1024;
memory_stats[5] = pagetok(vms.v_free_count);
memory_stats[6] = -1;
/* first interval */
if (swappgsin < 0) {
swap_stats[4] = 0;
swap_stats[5] = 0;
}
/* compute differences between old and new swap statistic */
else {
swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin)));
swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout)));
}
swappgsin = vmm.v_swappgsin;
swappgsout = vmm.v_swappgsout;
/* call CPU heavy swapmode() only for changes */
if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
swap_stats[3] = swapmode(&swapavail, &swapfree);
swap_stats[0] = swapavail;
swap_stats[1] = swapavail - swapfree;
swap_stats[2] = swapfree;
}
swap_delay = 1;
swap_stats[6] = -1;
}
/* set arrays and strings */
si->cpustates = cpu_states;
si->memory = memory_stats;
si->swap = swap_stats;
if(lastpid > 0) {
si->last_pid = lastpid;
} else {
si->last_pid = -1;
}
if (lastpid > 0) {
si->last_pid = lastpid;
} else {
si->last_pid = -1;
}
}
static struct handle handle;
caddr_t get_process_info(struct system_info *si, struct process_select *sel,
caddr_t
get_process_info(struct system_info *si, struct process_select *sel,
int compare_index)
{
int i;
int total_procs;
int active_procs;
struct kinfo_proc **prefp;
struct kinfo_proc *pp;
/* these are copied out of sel for speed */
int show_idle;
int show_system;
int show_uid;
pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
if (nproc > onproc)
pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *)
* (onproc = nproc));
if (pref == NULL || pbase == NULL) {
(void) fprintf(stderr, "top: Out of memory.\n");
quit(23);
}
/* get a pointer to the states summary array */
si->procstates = process_states;
/* set up flags which define what we are going to select */
show_idle = sel->idle;
show_system = sel->system;
show_uid = sel->uid != -1;
/* count up process states and get pointers to interesting procs */
total_procs = 0;
active_procs = 0;
memset((char *)process_states, 0, sizeof(process_states));
prefp = pref;
for (pp = pbase, i = 0; i < nproc; pp++, i++)
{
/*
* Place pointers to each valid proc structure in pref[].
* Process slots that are actually in use have a non-zero
* status field. Processes with P_SYSTEM set are system
* processes---these get ignored unless show_sysprocs is set.
*/
if ((show_threads && (LP(pp, pid) == -1)) ||
(show_system || ((PP(pp, flags) & P_SYSTEM) == 0)))
{
total_procs++;
process_states[(unsigned char) PP(pp, stat)]++;
if ((show_threads && (LP(pp, pid) == -1)) ||
(show_idle || (LP(pp, pctcpu) != 0) ||
(LP(pp, stat) == LSRUN)) &&
(!show_uid || PP(pp, ruid) == (uid_t)sel->uid))
{
*prefp++ = pp;
active_procs++;
}
int i;
int total_procs;
int active_procs;
struct kinfo_proc **prefp;
struct kinfo_proc *pp;
/* these are copied out of sel for speed */
int show_idle;
int show_system;
int show_uid;
pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
if (nproc > onproc)
pref = (struct kinfo_proc **)realloc(pref, sizeof(struct kinfo_proc *)
* (onproc = nproc));
if (pref == NULL || pbase == NULL) {
(void)fprintf(stderr, "top: Out of memory.\n");
quit(23);
}
/* get a pointer to the states summary array */
si->procstates = process_states;
/* set up flags which define what we are going to select */
show_idle = sel->idle;
show_system = sel->system;
show_uid = sel->uid != -1;
/* count up process states and get pointers to interesting procs */
total_procs = 0;
active_procs = 0;
memset((char *)process_states, 0, sizeof(process_states));
prefp = pref;
for (pp = pbase, i = 0; i < nproc; pp++, i++) {
/*
* Place pointers to each valid proc structure in pref[].
* Process slots that are actually in use have a non-zero
* status field. Processes with P_SYSTEM set are system
* processes---these get ignored unless show_sysprocs is set.
*/
if ((show_threads && (LP(pp, pid) == -1)) ||
(show_system || ((PP(pp, flags) & P_SYSTEM) == 0))) {
total_procs++;
process_states[(unsigned char)PP(pp, stat)]++;
if ((show_threads && (LP(pp, pid) == -1)) ||
(show_idle || (LP(pp, pctcpu) != 0) ||
(LP(pp, stat) == LSRUN)) &&
(!show_uid || PP(pp, ruid) == (uid_t) sel->uid)) {
*prefp++ = pp;
active_procs++;
}
}
}
}
qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *),
proc_compares[compare_index]);
proc_compares[compare_index]);
/* remember active and total counts */
si->p_total = total_procs;
si->p_active = pref_len = active_procs;
/* remember active and total counts */
si->p_total = total_procs;
si->p_active = pref_len = active_procs;
/* pass back a handle */
handle.next_proc = pref;
handle.remaining = active_procs;
return((caddr_t)&handle);
/* pass back a handle */
handle.next_proc = pref;
handle.remaining = active_procs;
return ((caddr_t) & handle);
}
char fmt[128]; /* static area where result is built */
char fmt[128]; /* static area where result is built */
char *
format_next_process(caddr_t xhandle, char *(*get_userid)(int))
format_next_process(caddr_t xhandle, char *(*get_userid) (int))
{
struct kinfo_proc *pp;
long cputime;
double pct;
struct handle *hp;
char status[16];
char const *wrapper;
int state;
int xnice;
/* find and remember the next proc structure */
hp = (struct handle *)xhandle;
pp = *(hp->next_proc++);
hp->remaining--;
/* set the wrapper for the process/thread name */
if ((PP(pp, flags) & P_SWAPPEDOUT))
wrapper = "[]"; /* swapped process [pname] */
else if (((PP(pp, flags) & P_SYSTEM) != 0) && (LP(pp, pid) > 0))
wrapper = "()"; /* system process (pname) */
else if (show_threads && (LP(pp, pid) == -1))
wrapper = "<>"; /* pure kernel threads <thread> */
else
wrapper = NULL;
/* get the process's command name */
if (wrapper != NULL) {
char *comm = PP(pp, comm);
struct kinfo_proc *pp;
long cputime;
double pct;
struct handle *hp;
char status[16];
char const *wrapper;
int state;
int xnice;
/* find and remember the next proc structure */
hp = (struct handle *)xhandle;
pp = *(hp->next_proc++);
hp->remaining--;
/* set the wrapper for the process/thread name */
if ((PP(pp, flags) & P_SWAPPEDOUT))
wrapper = "[]"; /* swapped process [pname] */
else if (((PP(pp, flags) & P_SYSTEM) != 0) && (LP(pp, pid) > 0))
wrapper = "()"; /* system process (pname) */
else if (show_threads && (LP(pp, pid) == -1))
wrapper = "<>"; /* pure kernel threads <thread> */
else
wrapper = NULL;
/* get the process's command name */
if (wrapper != NULL) {
char *comm = PP(pp, comm);
#define COMSIZ sizeof(PP(pp, comm))
char buf[COMSIZ];
(void) strncpy(buf, comm, COMSIZ);
comm[0] = wrapper[0];
(void) strncpy(&comm[1], buf, COMSIZ - 2);
comm[COMSIZ - 2] = '\0';
(void) strncat(comm, &wrapper[1], COMSIZ - 1);
comm[COMSIZ - 1] = '\0';
}
/*
* Convert the process's runtime from microseconds to seconds. This
* time includes the interrupt time although that is not wanted here.
* ps(1) is similarly sloppy.
*/
cputime = (LP(pp, uticks) + LP(pp, sticks)) / 1000000;
/* calculate the base for cpu percentages */
pct = pctdouble(LP(pp, pctcpu));
/* generate "STATE" field */
switch (state = LP(pp, stat)) {
char buf[COMSIZ];
(void)strncpy(buf, comm, COMSIZ);
comm[0] = wrapper[0];
(void)strncpy(&comm[1], buf, COMSIZ - 2);
comm[COMSIZ - 2] = '\0';
(void)strncat(comm, &wrapper[1], COMSIZ - 1);
comm[COMSIZ - 1] = '\0';
}
/*
* Convert the process's runtime from microseconds to seconds. This
* time includes the interrupt time although that is not wanted here.
* ps(1) is similarly sloppy.
*/
cputime = (LP(pp, uticks) + LP(pp, sticks)) / 1000000;
/* calculate the base for cpu percentages */
pct = pctdouble(LP(pp, pctcpu));
/* generate "STATE" field */
switch (state = LP(pp, stat)) {
case LSRUN:
if (smpmode && LP(pp, tdflags) & TDF_RUNNING)
sprintf(status, "CPU%d", LP(pp, cpuid));
else
strcpy(status, "RUN");
break;
if (smpmode && LP(pp, tdflags) & TDF_RUNNING)
sprintf(status, "CPU%d", LP(pp, cpuid));
else
strcpy(status, "RUN");
break;
case LSSLEEP:
if (LP(pp, wmesg) != NULL) {
sprintf(status, "%.6s", LP(pp, wmesg));
if (LP(pp, wmesg) != NULL) {
sprintf(status, "%.6s", LP(pp, wmesg));
break;
}
/* fall through */
default:
if (state >= 0 &&
(unsigned)state < sizeof(state_abbrev) / sizeof(*state_abbrev))
sprintf(status, "%.6s", state_abbrev[(unsigned char)state]);
else
sprintf(status, "?%5d", state);
break;
}
if (PP(pp, stat) == SZOMB)
strcpy(status, "ZOMB");
/*
* idle time 0 - 31 -> nice value +21 - +52 normal time -> nice
* value -20 - +20 real time 0 - 31 -> nice value -52 - -21 thread
* 0 - 31 -> nice value -53 -
*/
switch (LP(pp, rtprio.type)) {
case RTP_PRIO_REALTIME:
xnice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio);
break;
case RTP_PRIO_IDLE:
xnice = PRIO_MAX + 1 + LP(pp, rtprio.prio);
break;
case RTP_PRIO_THREAD:
xnice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio);
break;
}
/* fall through */
default:
xnice = PP(pp, nice);
break;
}
if (state >= 0 &&
(unsigned)state < sizeof(state_abbrev) / sizeof(*state_abbrev))
sprintf(status, "%.6s", state_abbrev[(unsigned char) state]);
else
sprintf(status, "?%5d", state);
break;
}
if (PP(pp, stat) == SZOMB)
strcpy(status, "ZOMB");
/*
* idle time 0 - 31 -> nice value +21 - +52
* normal time -> nice value -20 - +20
* real time 0 - 31 -> nice value -52 - -21
* thread 0 - 31 -> nice value -53 -
*/
switch(LP(pp, rtprio.type)) {
case RTP_PRIO_REALTIME:
xnice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio);
break;
case RTP_PRIO_IDLE:
xnice = PRIO_MAX + 1 + LP(pp, rtprio.prio);
break;
case RTP_PRIO_THREAD:
xnice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio);
break;
default:
xnice = PP(pp, nice);
break;
}
/* format this entry */
snprintf(fmt, sizeof(fmt),
/* format this entry */
snprintf(fmt, sizeof(fmt),
smpmode ? smp_Proc_format : up_Proc_format,
(int)PP(pp, pid),
namelength, namelength,
get_userid(PP(pp, ruid)),
(int)((show_threads && (LP(pp, pid) == -1)) ?
LP(pp, tdprio) : LP(pp, prio)),
LP(pp, tdprio) : LP(pp, prio)),
(int)xnice,
format_k(PROCSIZE(pp)),
format_k(pagetok(VP(pp, rssize))),
......
cmdlength,
printable(PP(pp, comm)));
/* return the result */
return(fmt);
/* return the result */
return (fmt);
}
#if 0
/*
* check_nlist(nlst) - checks the nlist to see if any symbols were not
* found. For every symbol that was not found, a one-line
* message is printed to stderr. The routine returns the
* number of symbols NOT found.
*/
static int
check_nlist(struct nlist *nlst)
{
int i;
/* check to see if we got ALL the symbols we requested */
/* this will write one line to stderr for every symbol not found */
i = 0;
while (nlst->n_name != NULL)
{
if (nlst->n_type == 0)
{
/* this one wasn't found */
(void) fprintf(stderr, "kernel: no symbol named `%s'\n",
nlst->n_name);
i = 1;
}
nlst++;
}
return(i);
}
#endif
/* comparison routines for qsort */
/*
* proc_compare - comparison function for "qsort"
* Compares the resource consumption of two processes using five
* distinct keys. The keys (in descending order of importance) are:
* percent cpu, cpu ticks, state, resident set size, total virtual
* memory usage. The process states are ordered as follows (from least
* to most important): WAIT, zombie, sleep, stop, start, run. The
* array declaration below maps a process state index into a number
* that reflects this ordering.
* proc_compare - comparison function for "qsort" Compares the resource
* consumption of two processes using five distinct keys. The keys (in
* descending order of importance) are: percent cpu, cpu ticks, state,
* resident set size, total virtual memory usage. The process states are
* ordered as follows (from least to most important): WAIT, zombie, sleep,
* stop, start, run. The array declaration below maps a process state index
* into a number that reflects this ordering.
*/
static unsigned char sorted_state[] =
{
0, /* not used */
3, /* sleep */
1, /* ABANDONED (WAIT) */
6, /* run */
5, /* start */
2, /* zombie */
4 /* stop */
0, /* not used */
3, /* sleep */
1, /* ABANDONED (WAIT) */
6, /* run */
5, /* start */
2, /* zombie */
4 /* stop */
};
#define ORDERKEY_PCTCPU \
if (lresult = (long) LP(p2, pctcpu) - (long) LP(p1, pctcpu), \
......
if ((result = LP(p2, tdprio) - LP(p1, tdprio)) == 0)
#define ORDERKEY_RSSIZE \
if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0)
if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0)
#define ORDERKEY_MEM \
if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
......
int
proc_compare(const void *arg1, const void *arg2)
{
const struct proc *const*pp1 = arg1;
const struct proc *const*pp2 = arg2;
const struct kinfo_proc *p1;
const struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(const struct kinfo_proc *const *) pp1;
p2 = *(const struct kinfo_proc *const *) pp2;
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_PRIO
ORDERKEY_RSSIZE
ORDERKEY_MEM
{}
return(result);
const struct proc *const *pp1 = arg1;
const struct proc *const *pp2 = arg2;
const struct kinfo_proc *p1;
const struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(const struct kinfo_proc *const *)pp1;
p2 = *(const struct kinfo_proc *const *)pp2;
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_PRIO
ORDERKEY_RSSIZE
ORDERKEY_MEM
{
}
return (result);
}
/* compare_size - the comparison function for sorting by total memory usage */
......
int
compare_size(const void *arg1, const void *arg2)
{
struct proc *const *pp1 = arg1;
struct proc *const *pp2 = arg2;
struct kinfo_proc *p1;
struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc *const*) pp1;
p2 = *(struct kinfo_proc *const*) pp2;
ORDERKEY_MEM
ORDERKEY_RSSIZE
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_PRIO
{}
return(result);
struct proc *const *pp1 = arg1;
struct proc *const *pp2 = arg2;
struct kinfo_proc *p1;
struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc *const *)pp1;
p2 = *(struct kinfo_proc *const *)pp2;
ORDERKEY_MEM
ORDERKEY_RSSIZE
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_PRIO
{
}
return (result);
}
/* compare_res - the comparison function for sorting by resident set size */
......
int
compare_res(const void *arg1, const void *arg2)
{
struct proc *const *pp1 = arg1;
struct proc *const *pp2 = arg2;
struct kinfo_proc *p1;
struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc *const*) pp1;
p2 = *(struct kinfo_proc *const*) pp2;
ORDERKEY_RSSIZE
ORDERKEY_MEM
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_PRIO
{}
return(result);
struct proc *const *pp1 = arg1;
struct proc *const *pp2 = arg2;
struct kinfo_proc *p1;
struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc *const *)pp1;
p2 = *(struct kinfo_proc *const *)pp2;
ORDERKEY_RSSIZE
ORDERKEY_MEM
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_PRIO
{
}
return (result);
}
/* compare_time - the comparison function for sorting by total cpu time */
......
int
compare_time(const void *arg1, const void *arg2)
{
struct proc *const *pp1 = arg1;
struct proc *const *pp2 = arg2;
const struct kinfo_proc *p1;
const struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc *const*) pp1;
p2 = *(struct kinfo_proc *const*) pp2;
ORDERKEY_CPTICKS
ORDERKEY_PCTCPU
ORDERKEY_KTHREADS
ORDERKEY_KTHREADS_PRIO
ORDERKEY_STATE
ORDERKEY_PRIO
ORDERKEY_RSSIZE
ORDERKEY_MEM
{}
return(result);
}
struct proc *const *pp1 = arg1;
struct proc *const *pp2 = arg2;
const struct kinfo_proc *p1;
const struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc *const *)pp1;
p2 = *(struct kinfo_proc *const *)pp2;
ORDERKEY_CPTICKS
ORDERKEY_PCTCPU
ORDERKEY_KTHREADS
ORDERKEY_KTHREADS_PRIO
ORDERKEY_STATE
ORDERKEY_PRIO
ORDERKEY_RSSIZE
ORDERKEY_MEM
{}
return (result);
}
/* compare_prio - the comparison function for sorting by cpu percentage */
int
compare_prio(const void *arg1, const void *arg2)
{
struct proc *const *pp1 = arg1;
struct proc *const *pp2 = arg2;
const struct kinfo_proc *p1;
const struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc *const*) pp1;
p2 = *(struct kinfo_proc *const*) pp2;
ORDERKEY_KTHREADS
ORDERKEY_KTHREADS_PRIO
ORDERKEY_PRIO
ORDERKEY_CPTICKS
ORDERKEY_PCTCPU
ORDERKEY_STATE
ORDERKEY_RSSIZE
ORDERKEY_MEM
{}
return(result);
struct proc *const *pp1 = arg1;
struct proc *const *pp2 = arg2;
const struct kinfo_proc *p1;
const struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc *const *)pp1;
p2 = *(struct kinfo_proc *const *)pp2;
ORDERKEY_KTHREADS
ORDERKEY_KTHREADS_PRIO
ORDERKEY_PRIO
ORDERKEY_CPTICKS
ORDERKEY_PCTCPU
ORDERKEY_STATE
ORDERKEY_RSSIZE
ORDERKEY_MEM
{}
return (result);
}
int
compare_thr(const void *arg1, const void *arg2)
{
struct proc *const *pp1 = arg1;
struct proc *const *pp2 = arg2;
const struct kinfo_proc *p1;
const struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc *const*) pp1;
p2 = *(struct kinfo_proc *const*) pp2;
ORDERKEY_KTHREADS
ORDERKEY_KTHREADS_PRIO
ORDERKEY_CPTICKS
ORDERKEY_PCTCPU
ORDERKEY_STATE
ORDERKEY_RSSIZE
ORDERKEY_MEM
{}
return(result);
struct proc *const *pp1 = arg1;
struct proc *const *pp2 = arg2;
const struct kinfo_proc *p1;
const struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc *const *)pp1;
p2 = *(struct kinfo_proc *const *)pp2;
ORDERKEY_KTHREADS
ORDERKEY_KTHREADS_PRIO
ORDERKEY_CPTICKS
ORDERKEY_PCTCPU
ORDERKEY_STATE
ORDERKEY_RSSIZE
ORDERKEY_MEM
{}
return (result);
}
/*
* proc_owner(pid) - returns the uid that owns process "pid", or -1 if
* the process does not exist.
* It is EXTREMLY IMPORTANT that this function work correctly.
* If top runs setuid root (as in SVR4), then this function
* is the only thing that stands in the way of a serious
* security problem. It validates requests for the "kill"
* and "renice" commands.
* proc_owner(pid) - returns the uid that owns process "pid", or -1 if the
* process does not exist. It is EXTREMLY IMPORTANT that this function work
* correctly. If top runs setuid root (as in SVR4), then this function is the
* only thing that stands in the way of a serious security problem. It
* validates requests for the "kill" and "renice" commands.
*/
int
proc_owner(int pid)
{
int xcnt;
struct kinfo_proc **prefp;
struct kinfo_proc *pp;
prefp = pref;
xcnt = pref_len;
while (--xcnt >= 0)
{
pp = *prefp++;
if (PP(pp, pid) == (pid_t)pid)
{
return((int)PP(pp, ruid));
int xcnt;
struct kinfo_proc **prefp;
struct kinfo_proc *pp;
prefp = pref;
xcnt = pref_len;
while (--xcnt >= 0) {
pp = *prefp++;
if (PP(pp, pid) == (pid_t) pid) {
return ((int)PP(pp, ruid));
}
}
}
return(-1);
return (-1);
}
/*
* swapmode is based on a program called swapinfo written
* by Kevin Lahey <kml@rokkaku.atl.ga.us>.
* swapmode is based on a program called swapinfo written by Kevin Lahey
* <kml@rokkaku.atl.ga.us>.
*/
int
swapmode(int *retavail, int *retfree)
......
n = kvm_getswapinfo(kd, swapary, 1, 0);
if (n < 0 || swapary[0].ksw_total == 0)
return(0);
return (0);
*retavail = CONVERT(swapary[0].ksw_total);
*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
n = (int)((double)swapary[0].ksw_used * 100.0 /
(double)swapary[0].ksw_total);
return(n);
return (n);
}
    (1-1/1)