Bug #1617 ยป m_dragonfly_w_cleanup.patch
usr.bin/top/m_dragonfly.c | ||
---|---|---|
/*
|
||
* top - a top users display for Unix
|
||
*
|
||
*
|
||
* SYNOPSIS: For DragonFly 2.x and later
|
||
*
|
||
* DESCRIPTION:
|
||
* Originally written for BSD4.4 system by Christos Zoulas.
|
||
* Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
|
||
* Order support hacked in from top-3.5beta6/machine/m_aix41.c
|
||
* by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
|
||
*
|
||
* This is the machine-dependent module for DragonFly 2.5.1
|
||
* Should work for:
|
||
* DragonFly 2.x and above
|
||
*
|
||
*
|
||
* DESCRIPTION: Originally written for BSD4.4 system by Christos Zoulas. Ported
|
||
* to FreeBSD 2.x by Steven Wallace && Wolfram Schneider Order support hacked
|
||
* in from top-3.5beta6/machine/m_aix41.c by Monte Mitzelfelt (for latest top
|
||
* see http://www.groupsys.com/topinfo/)
|
||
*
|
||
* This is the machine-dependent module for DragonFly 2.5.1 Should work for:
|
||
* DragonFly 2.x and above
|
||
*
|
||
* LIBS: -lkvm
|
||
*
|
||
*
|
||
* AUTHOR: Jan Lentfer <Jan.Lentfer@web.de>
|
||
* This module has been put together from different sources and is based on the
|
||
* work of many other people, e.g. Matthew Dillon, Simon Schubert, Jordan Gordeev.
|
||
*
|
||
* This module has been put together from different sources and is based on
|
||
* the work of many other people, e.g. Matthew Dillon, Simon Schubert,
|
||
* Jordan Gordeev.
|
||
*
|
||
* $FreeBSD: src/usr.bin/top/machine.c,v 1.29.2.2 2001/07/31 20:27:05 tmm Exp $
|
||
* $DragonFly: src/usr.bin/top/machine.c,v 1.26 2008/10/16 01:52:33 swildner Exp $
|
||
* $DragonFly: src/usr.bin/top/machine.c,v 1.26 2008/10/16 01:52:33 swildner
|
||
* Exp $
|
||
*/
|
||
... | ... | |
#include <stdio.h>
|
||
#include <sys/conf.h>
|
||
#include <osreldate.h> /* for changes in kernel structures */
|
||
#include <osreldate.h> /* for changes in kernel structures */
|
||
#include <sys/kinfo.h>
|
||
#include <kinfo.h>
|
||
... | ... | |
#include "screen.h"
|
||
#include "utils.h"
|
||
#if 0
|
||
static int check_nlist(struct nlist *);
|
||
static int getkval(unsigned long, int *, int, char *);
|
||
#endif
|
||
int swapmode(int *retavail, int *retfree);
|
||
static int smpmode;
|
||
static int namelength;
|
||
... | ... | |
int n_cpus = 0;
|
||
/*
|
||
* needs to be a global symbol, so wrapper can be
|
||
* modified accordingly.
|
||
/*
|
||
* needs to be a global symbol, so wrapper can be modified accordingly.
|
||
*/
|
||
static int show_threads = 0;
|
||
/* get_process_info passes back a handle. This is what it looks like: */
|
||
struct handle
|
||
{
|
||
struct kinfo_proc **next_proc; /* points to next valid proc pointer */
|
||
int remaining; /* number of pointers remaining */
|
||
struct handle {
|
||
struct kinfo_proc **next_proc; /* points to next valid proc pointer */
|
||
int remaining; /* number of pointers remaining */
|
||
};
|
||
/* declarations for load_avg */
|
||
... | ... | |
#define PROCSIZE(pp) (VP((pp), map_size) / 1024)
|
||
/*
|
||
* These definitions control the format of the per-process area
|
||
* These definitions control the format of the per-process area
|
||
*/
|
||
static char smp_header[] =
|
||
" PID %-*.*s PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND";
|
||
" PID %-*.*s PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND";
|
||
#define smp_Proc_format \
|
||
"%5d %-*.*s %3d %3d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s"
|
||
static char up_header[] =
|
||
" PID %-*.*s PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND";
|
||
" PID %-*.*s PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND";
|
||
#define up_Proc_format \
|
||
"%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s"
|
||
... | ... | |
/* process state names for the "STATE" column of the display */
|
||
/* the extra nulls in the string "run" are for adding a slash and
|
||
the processor number when needed */
|
||
/*
|
||
* the extra nulls in the string "run" are for adding a slash and the
|
||
* processor number when needed
|
||
*/
|
||
const char *state_abbrev[] =
|
||
{
|
||
"", "RUN\0\0\0", "STOP", "SLEEP",
|
||
const char *state_abbrev[] = {
|
||
"", "RUN\0\0\0", "STOP", "SLEEP",
|
||
};
|
||
... | ... | |
int process_states[6];
|
||
char *procstatenames[] = {
|
||
"", " starting, ", " running, ", " sleeping, ", " stopped, ",
|
||
" zombie, ",
|
||
NULL
|
||
"", " starting, ", " running, ", " sleeping, ", " stopped, ",
|
||
" zombie, ",
|
||
NULL
|
||
};
|
||
/* these are for detailing the cpu states */
|
||
#define CPU_STATES 5
|
||
int *cpu_states;
|
||
char *cpustatenames[CPU_STATES + 1] = {
|
||
"user", "nice", "system", "interrupt", "idle", NULL
|
||
"user", "nice", "system", "interrupt", "idle", NULL
|
||
};
|
||
/* these are for detailing the memory statistics */
|
||
long memory_stats[7];
|
||
char *memorynames[] = {
|
||
"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
|
||
NULL
|
||
"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
|
||
NULL
|
||
};
|
||
long swap_stats[7];
|
||
char *swapnames[] = {
|
||
/* 0 1 2 3 4 5 */
|
||
"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
|
||
NULL
|
||
/* 0 1 2 3 4 5 */
|
||
"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
|
||
NULL
|
||
};
|
||
... | ... | |
/* sorting orders. first is default */
|
||
char *ordernames[] = {
|
||
"cpu", "size", "res", "time", "pri", "thr", NULL
|
||
"cpu", "size", "res", "time", "pri", "thr", NULL
|
||
};
|
||
/* compare routines */
|
||
int proc_compare(), compare_size(), compare_res(), compare_time(), compare_prio(), compare_thr();
|
||
int (*proc_compares[])() = {
|
||
int (*proc_compares[]) () = {
|
||
proc_compare,
|
||
compare_size,
|
||
compare_res,
|
||
... | ... | |
static void
|
||
cputime_percentages(int out[CPU_STATES], struct kinfo_cputime *new,
|
||
struct kinfo_cputime *old)
|
||
struct kinfo_cputime *old)
|
||
{
|
||
struct kinfo_cputime diffs;
|
||
struct kinfo_cputime diffs;
|
||
uint64_t total_change, half_total;
|
||
/* initialization */
|
||
/* initialization */
|
||
total_change = 0;
|
||
diffs.cp_user = new->cp_user - old->cp_user;
|
||
diffs.cp_user = new->cp_user - old->cp_user;
|
||
diffs.cp_nice = new->cp_nice - old->cp_nice;
|
||
diffs.cp_sys = new->cp_sys - old->cp_sys;
|
||
diffs.cp_intr = new->cp_intr - old->cp_intr;
|
||
diffs.cp_idle = new->cp_idle - old->cp_idle;
|
||
diffs.cp_intr = new->cp_intr - old->cp_intr;
|
||
diffs.cp_idle = new->cp_idle - old->cp_idle;
|
||
total_change = diffs.cp_user + diffs.cp_nice + diffs.cp_sys +
|
||
diffs.cp_intr + diffs.cp_idle;
|
||
old->cp_user = new->cp_user;
|
||
old->cp_nice = new->cp_nice;
|
||
old->cp_sys = new->cp_sys;
|
||
old->cp_intr = new->cp_intr;
|
||
diffs.cp_intr + diffs.cp_idle;
|
||
old->cp_user = new->cp_user;
|
||
old->cp_nice = new->cp_nice;
|
||
old->cp_sys = new->cp_sys;
|
||
old->cp_intr = new->cp_intr;
|
||
old->cp_idle = new->cp_idle;
|
||
/* avoid divide by zero potential */
|
||
/* avoid divide by zero potential */
|
||
if (total_change == 0)
|
||
total_change = 1;
|
||
/* calculate percentages based on overall change, rounding up */
|
||
half_total = total_change >> 1;
|
||
half_total = total_change >> 1;
|
||
out[0] = ((diffs.cp_user * 1000LL + half_total) / total_change);
|
||
out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change);
|
||
out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change);
|
||
out[2] = ((diffs.cp_sys * 1000LL + half_total) / total_change);
|
||
out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change);
|
||
out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change);
|
||
out[4] = ((diffs.cp_idle * 1000LL + half_total) / total_change);
|
||
}
|
||
int
|
||
machine_init(struct statics *statics)
|
||
{
|
||
int pagesize;
|
||
size_t modelen;
|
||
struct passwd *pw;
|
||
int pagesize;
|
||
size_t modelen;
|
||
struct passwd *pw;
|
||
struct timeval boottime;
|
||
if (n_cpus < 1) {
|
||
if (kinfo_get_cpus(&n_cpus))
|
||
err(1, "kinfo_get_cpus failed");
|
||
}
|
||
if (n_cpus < 1) {
|
||
if (kinfo_get_cpus(&n_cpus))
|
||
err(1, "kinfo_get_cpus failed");
|
||
}
|
||
/* get boot time */
|
||
modelen = sizeof(boottime);
|
||
if (sysctlbyname("kern.boottime", &boottime, &modelen, NULL, 0) == -1) {
|
||
|
||
/* we have no boottime to report */
|
||
boottime.tv_sec = -1;
|
||
}
|
||
modelen = sizeof(smpmode);
|
||
if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
|
||
sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) ||
|
||
modelen != sizeof(smpmode))
|
||
smpmode = 0;
|
||
while ((pw = getpwent()) != NULL) {
|
||
if ((int)strlen(pw->pw_name) > namelength)
|
||
namelength = strlen(pw->pw_name);
|
||
}
|
||
if (namelength < 8)
|
||
namelength = 8;
|
||
if (smpmode && namelength > 13)
|
||
namelength = 13;
|
||
else if (namelength > 15)
|
||
namelength = 15;
|
||
if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL)
|
||
return -1;
|
||
if (kinfo_get_sched_ccpu(&ccpu)) {
|
||
fprintf(stderr, "top: kinfo_get_sched_ccpu failed\n");
|
||
return (-1);
|
||
}
|
||
/* this is used in calculating WCPU -- calculate it ahead of time */
|
||
logcpu = log(loaddouble(ccpu));
|
||
pbase = NULL;
|
||
pref = NULL;
|
||
nproc = 0;
|
||
onproc = -1;
|
||
/*
|
||
* get the page size with "getpagesize" and calculate pageshift from
|
||
* it
|
||
*/
|
||
pagesize = getpagesize();
|
||
pageshift = 0;
|
||
while (pagesize > 1) {
|
||
pageshift++;
|
||
pagesize >>= 1;
|
||
}
|
||
/* we only need the amount of log(2)1024 for our conversion */
|
||
pageshift -= LOG1024;
|
||
/* fill in the statics information */
|
||
statics->procstate_names = procstatenames;
|
||
statics->cpustate_names = cpustatenames;
|
||
statics->memory_names = memorynames;
|
||
statics->boottime = boottime.tv_sec;
|
||
statics->swap_names = swapnames;
|
||
statics->order_names = ordernames;
|
||
modelen = sizeof(smpmode);
|
||
if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
|
||
sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) ||
|
||
modelen != sizeof(smpmode))
|
||
smpmode = 0;
|
||
while ((pw = getpwent()) != NULL) {
|
||
if ((int)strlen(pw->pw_name) > namelength)
|
||
namelength = strlen(pw->pw_name);
|
||
}
|
||
if (namelength < 8)
|
||
namelength = 8;
|
||
if (smpmode && namelength > 13)
|
||
namelength = 13;
|
||
else if (namelength > 15)
|
||
namelength = 15;
|
||
if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL)
|
||
return -1;
|
||
if (kinfo_get_sched_ccpu(&ccpu)) {
|
||
fprintf(stderr, "top: kinfo_get_sched_ccpu failed\n");
|
||
return(-1);
|
||
}
|
||
/* this is used in calculating WCPU -- calculate it ahead of time */
|
||
logcpu = log(loaddouble(ccpu));
|
||
pbase = NULL;
|
||
pref = NULL;
|
||
nproc = 0;
|
||
onproc = -1;
|
||
/* get the page size with "getpagesize" and calculate pageshift from it */
|
||
pagesize = getpagesize();
|
||
pageshift = 0;
|
||
while (pagesize > 1)
|
||
{
|
||
pageshift++;
|
||
pagesize >>= 1;
|
||
}
|
||
/* we only need the amount of log(2)1024 for our conversion */
|
||
pageshift -= LOG1024;
|
||
/* fill in the statics information */
|
||
statics->procstate_names = procstatenames;
|
||
statics->cpustate_names = cpustatenames;
|
||
statics->memory_names = memorynames;
|
||
statics->boottime = boottime.tv_sec;
|
||
statics->swap_names = swapnames;
|
||
statics->order_names = ordernames;
|
||
/* all done! */
|
||
return(0);
|
||
/* all done! */
|
||
return (0);
|
||
}
|
||
char *
|
||
format_header(char *uname_field)
|
||
{
|
||
static char Header[128];
|
||
static char Header[128];
|
||
snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
|
||
namelength, namelength, uname_field);
|
||
snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
|
||
namelength, namelength, uname_field);
|
||
if (screen_width <= 79)
|
||
cmdlength = 80;
|
||
else
|
||
cmdlength = 89;
|
||
if (screen_width <= 79)
|
||
cmdlength = 80;
|
||
else
|
||
cmdlength = 89;
|
||
cmdlength = cmdlength - strlen(Header) + 6;
|
||
cmdlength = cmdlength - strlen(Header) + 6;
|
||
return Header;
|
||
return Header;
|
||
}
|
||
static int swappgsin = -1;
|
||
... | ... | |
void
|
||
get_system_info(struct system_info *si)
|
||
{
|
||
size_t len;
|
||
int cpu;
|
||
if (cpu_states == NULL) {
|
||
cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus);
|
||
if (cpu_states == NULL)
|
||
err(1, "malloc");
|
||
bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus);
|
||
}
|
||
if (cp_time == NULL) {
|
||
cp_time = malloc(2 * n_cpus * sizeof(cp_time[0]));
|
||
if (cp_time == NULL)
|
||
err(1, "cp_time");
|
||
cp_old = cp_time + n_cpus;
|
||
len = n_cpus * sizeof(cp_old[0]);
|
||
bzero(cp_time, len);
|
||
if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0))
|
||
err(1, "kern.cputime");
|
||
}
|
||
len = n_cpus * sizeof(cp_time[0]);
|
||
bzero(cp_time, len);
|
||
if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0))
|
||
err(1, "kern.cputime");
|
||
getloadavg(si->load_avg, 3);
|
||
lastpid = 0;
|
||
/* convert cp_time counts to percentages */
|
||
for (cpu = 0; cpu < n_cpus; ++cpu) {
|
||
cputime_percentages(cpu_states + cpu * CPU_STATES,
|
||
&cp_time[cpu], &cp_old[cpu]);
|
||
}
|
||
/* sum memory & swap statistics */
|
||
{
|
||
struct vmmeter vmm;
|
||
struct vmstats vms;
|
||
size_t vms_size = sizeof(vms);
|
||
size_t vmm_size = sizeof(vmm);
|
||
static unsigned int swap_delay = 0;
|
||
static int swapavail = 0;
|
||
static int swapfree = 0;
|
||
static int bufspace = 0;
|
||
if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0))
|
||
err(1, "sysctlbyname: vm.vmstats");
|
||
if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0))
|
||
err(1, "sysctlbyname: vm.vmmeter");
|
||
if (kinfo_get_vfs_bufspace(&bufspace))
|
||
err(1, "kinfo_get_vfs_bufspace");
|
||
/* convert memory stats to Kbytes */
|
||
memory_stats[0] = pagetok(vms.v_active_count);
|
||
memory_stats[1] = pagetok(vms.v_inactive_count);
|
||
memory_stats[2] = pagetok(vms.v_wire_count);
|
||
memory_stats[3] = pagetok(vms.v_cache_count);
|
||
memory_stats[4] = bufspace / 1024;
|
||
memory_stats[5] = pagetok(vms.v_free_count);
|
||
memory_stats[6] = -1;
|
||
/* first interval */
|
||
if (swappgsin < 0) {
|
||
swap_stats[4] = 0;
|
||
swap_stats[5] = 0;
|
||
}
|
||
/* compute differences between old and new swap statistic */
|
||
else {
|
||
swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin)));
|
||
swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout)));
|
||
size_t len;
|
||
int cpu;
|
||
if (cpu_states == NULL) {
|
||
cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus);
|
||
if (cpu_states == NULL)
|
||
err(1, "malloc");
|
||
bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus);
|
||
}
|
||
if (cp_time == NULL) {
|
||
cp_time = malloc(2 * n_cpus * sizeof(cp_time[0]));
|
||
if (cp_time == NULL)
|
||
err(1, "cp_time");
|
||
cp_old = cp_time + n_cpus;
|
||
len = n_cpus * sizeof(cp_old[0]);
|
||
bzero(cp_time, len);
|
||
if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0))
|
||
err(1, "kern.cputime");
|
||
}
|
||
len = n_cpus * sizeof(cp_time[0]);
|
||
bzero(cp_time, len);
|
||
if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0))
|
||
err(1, "kern.cputime");
|
||
swappgsin = vmm.v_swappgsin;
|
||
swappgsout = vmm.v_swappgsout;
|
||
getloadavg(si->load_avg, 3);
|
||
/* call CPU heavy swapmode() only for changes */
|
||
if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
|
||
swap_stats[3] = swapmode(&swapavail, &swapfree);
|
||
swap_stats[0] = swapavail;
|
||
swap_stats[1] = swapavail - swapfree;
|
||
swap_stats[2] = swapfree;
|
||
lastpid = 0;
|
||
/* convert cp_time counts to percentages */
|
||
for (cpu = 0; cpu < n_cpus; ++cpu) {
|
||
cputime_percentages(cpu_states + cpu * CPU_STATES,
|
||
&cp_time[cpu], &cp_old[cpu]);
|
||
}
|
||
swap_delay = 1;
|
||
swap_stats[6] = -1;
|
||
}
|
||
/* set arrays and strings */
|
||
si->cpustates = cpu_states;
|
||
si->memory = memory_stats;
|
||
si->swap = swap_stats;
|
||
/* sum memory & swap statistics */
|
||
{
|
||
struct vmmeter vmm;
|
||
struct vmstats vms;
|
||
size_t vms_size = sizeof(vms);
|
||
size_t vmm_size = sizeof(vmm);
|
||
static unsigned int swap_delay = 0;
|
||
static int swapavail = 0;
|
||
static int swapfree = 0;
|
||
static int bufspace = 0;
|
||
if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0))
|
||
err(1, "sysctlbyname: vm.vmstats");
|
||
if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0))
|
||
err(1, "sysctlbyname: vm.vmmeter");
|
||
if (kinfo_get_vfs_bufspace(&bufspace))
|
||
err(1, "kinfo_get_vfs_bufspace");
|
||
/* convert memory stats to Kbytes */
|
||
memory_stats[0] = pagetok(vms.v_active_count);
|
||
memory_stats[1] = pagetok(vms.v_inactive_count);
|
||
memory_stats[2] = pagetok(vms.v_wire_count);
|
||
memory_stats[3] = pagetok(vms.v_cache_count);
|
||
memory_stats[4] = bufspace / 1024;
|
||
memory_stats[5] = pagetok(vms.v_free_count);
|
||
memory_stats[6] = -1;
|
||
/* first interval */
|
||
if (swappgsin < 0) {
|
||
swap_stats[4] = 0;
|
||
swap_stats[5] = 0;
|
||
}
|
||
/* compute differences between old and new swap statistic */
|
||
else {
|
||
swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin)));
|
||
swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout)));
|
||
}
|
||
swappgsin = vmm.v_swappgsin;
|
||
swappgsout = vmm.v_swappgsout;
|
||
/* call CPU heavy swapmode() only for changes */
|
||
if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
|
||
swap_stats[3] = swapmode(&swapavail, &swapfree);
|
||
swap_stats[0] = swapavail;
|
||
swap_stats[1] = swapavail - swapfree;
|
||
swap_stats[2] = swapfree;
|
||
}
|
||
swap_delay = 1;
|
||
swap_stats[6] = -1;
|
||
}
|
||
/* set arrays and strings */
|
||
si->cpustates = cpu_states;
|
||
si->memory = memory_stats;
|
||
si->swap = swap_stats;
|
||
if(lastpid > 0) {
|
||
si->last_pid = lastpid;
|
||
} else {
|
||
si->last_pid = -1;
|
||
}
|
||
if (lastpid > 0) {
|
||
si->last_pid = lastpid;
|
||
} else {
|
||
si->last_pid = -1;
|
||
}
|
||
}
|
||
static struct handle handle;
|
||
caddr_t get_process_info(struct system_info *si, struct process_select *sel,
|
||
caddr_t
|
||
get_process_info(struct system_info *si, struct process_select *sel,
|
||
int compare_index)
|
||
{
|
||
int i;
|
||
int total_procs;
|
||
int active_procs;
|
||
struct kinfo_proc **prefp;
|
||
struct kinfo_proc *pp;
|
||
/* these are copied out of sel for speed */
|
||
int show_idle;
|
||
int show_system;
|
||
int show_uid;
|
||
|
||
pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
|
||
if (nproc > onproc)
|
||
pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *)
|
||
* (onproc = nproc));
|
||
if (pref == NULL || pbase == NULL) {
|
||
(void) fprintf(stderr, "top: Out of memory.\n");
|
||
quit(23);
|
||
}
|
||
/* get a pointer to the states summary array */
|
||
si->procstates = process_states;
|
||
/* set up flags which define what we are going to select */
|
||
show_idle = sel->idle;
|
||
show_system = sel->system;
|
||
show_uid = sel->uid != -1;
|
||
/* count up process states and get pointers to interesting procs */
|
||
total_procs = 0;
|
||
active_procs = 0;
|
||
memset((char *)process_states, 0, sizeof(process_states));
|
||
prefp = pref;
|
||
for (pp = pbase, i = 0; i < nproc; pp++, i++)
|
||
{
|
||
/*
|
||
* Place pointers to each valid proc structure in pref[].
|
||
* Process slots that are actually in use have a non-zero
|
||
* status field. Processes with P_SYSTEM set are system
|
||
* processes---these get ignored unless show_sysprocs is set.
|
||
*/
|
||
if ((show_threads && (LP(pp, pid) == -1)) ||
|
||
(show_system || ((PP(pp, flags) & P_SYSTEM) == 0)))
|
||
{
|
||
total_procs++;
|
||
process_states[(unsigned char) PP(pp, stat)]++;
|
||
if ((show_threads && (LP(pp, pid) == -1)) ||
|
||
(show_idle || (LP(pp, pctcpu) != 0) ||
|
||
(LP(pp, stat) == LSRUN)) &&
|
||
(!show_uid || PP(pp, ruid) == (uid_t)sel->uid))
|
||
{
|
||
*prefp++ = pp;
|
||
active_procs++;
|
||
}
|
||
int i;
|
||
int total_procs;
|
||
int active_procs;
|
||
struct kinfo_proc **prefp;
|
||
struct kinfo_proc *pp;
|
||
/* these are copied out of sel for speed */
|
||
int show_idle;
|
||
int show_system;
|
||
int show_uid;
|
||
pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
|
||
if (nproc > onproc)
|
||
pref = (struct kinfo_proc **)realloc(pref, sizeof(struct kinfo_proc *)
|
||
* (onproc = nproc));
|
||
if (pref == NULL || pbase == NULL) {
|
||
(void)fprintf(stderr, "top: Out of memory.\n");
|
||
quit(23);
|
||
}
|
||
/* get a pointer to the states summary array */
|
||
si->procstates = process_states;
|
||
/* set up flags which define what we are going to select */
|
||
show_idle = sel->idle;
|
||
show_system = sel->system;
|
||
show_uid = sel->uid != -1;
|
||
/* count up process states and get pointers to interesting procs */
|
||
total_procs = 0;
|
||
active_procs = 0;
|
||
memset((char *)process_states, 0, sizeof(process_states));
|
||
prefp = pref;
|
||
for (pp = pbase, i = 0; i < nproc; pp++, i++) {
|
||
/*
|
||
* Place pointers to each valid proc structure in pref[].
|
||
* Process slots that are actually in use have a non-zero
|
||
* status field. Processes with P_SYSTEM set are system
|
||
* processes---these get ignored unless show_sysprocs is set.
|
||
*/
|
||
if ((show_threads && (LP(pp, pid) == -1)) ||
|
||
(show_system || ((PP(pp, flags) & P_SYSTEM) == 0))) {
|
||
total_procs++;
|
||
process_states[(unsigned char)PP(pp, stat)]++;
|
||
if ((show_threads && (LP(pp, pid) == -1)) ||
|
||
(show_idle || (LP(pp, pctcpu) != 0) ||
|
||
(LP(pp, stat) == LSRUN)) &&
|
||
(!show_uid || PP(pp, ruid) == (uid_t) sel->uid)) {
|
||
*prefp++ = pp;
|
||
active_procs++;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *),
|
||
proc_compares[compare_index]);
|
||
proc_compares[compare_index]);
|
||
/* remember active and total counts */
|
||
si->p_total = total_procs;
|
||
si->p_active = pref_len = active_procs;
|
||
/* remember active and total counts */
|
||
si->p_total = total_procs;
|
||
si->p_active = pref_len = active_procs;
|
||
/* pass back a handle */
|
||
handle.next_proc = pref;
|
||
handle.remaining = active_procs;
|
||
return((caddr_t)&handle);
|
||
/* pass back a handle */
|
||
handle.next_proc = pref;
|
||
handle.remaining = active_procs;
|
||
return ((caddr_t) & handle);
|
||
}
|
||
char fmt[128]; /* static area where result is built */
|
||
char fmt[128]; /* static area where result is built */
|
||
char *
|
||
format_next_process(caddr_t xhandle, char *(*get_userid)(int))
|
||
format_next_process(caddr_t xhandle, char *(*get_userid) (int))
|
||
{
|
||
struct kinfo_proc *pp;
|
||
long cputime;
|
||
double pct;
|
||
struct handle *hp;
|
||
char status[16];
|
||
char const *wrapper;
|
||
int state;
|
||
int xnice;
|
||
/* find and remember the next proc structure */
|
||
hp = (struct handle *)xhandle;
|
||
pp = *(hp->next_proc++);
|
||
hp->remaining--;
|
||
|
||
/* set the wrapper for the process/thread name */
|
||
if ((PP(pp, flags) & P_SWAPPEDOUT))
|
||
wrapper = "[]"; /* swapped process [pname] */
|
||
else if (((PP(pp, flags) & P_SYSTEM) != 0) && (LP(pp, pid) > 0))
|
||
wrapper = "()"; /* system process (pname) */
|
||
else if (show_threads && (LP(pp, pid) == -1))
|
||
wrapper = "<>"; /* pure kernel threads <thread> */
|
||
else
|
||
wrapper = NULL;
|
||
|
||
/* get the process's command name */
|
||
if (wrapper != NULL) {
|
||
char *comm = PP(pp, comm);
|
||
struct kinfo_proc *pp;
|
||
long cputime;
|
||
double pct;
|
||
struct handle *hp;
|
||
char status[16];
|
||
char const *wrapper;
|
||
int state;
|
||
int xnice;
|
||
/* find and remember the next proc structure */
|
||
hp = (struct handle *)xhandle;
|
||
pp = *(hp->next_proc++);
|
||
hp->remaining--;
|
||
/* set the wrapper for the process/thread name */
|
||
if ((PP(pp, flags) & P_SWAPPEDOUT))
|
||
wrapper = "[]"; /* swapped process [pname] */
|
||
else if (((PP(pp, flags) & P_SYSTEM) != 0) && (LP(pp, pid) > 0))
|
||
wrapper = "()"; /* system process (pname) */
|
||
else if (show_threads && (LP(pp, pid) == -1))
|
||
wrapper = "<>"; /* pure kernel threads <thread> */
|
||
else
|
||
wrapper = NULL;
|
||
/* get the process's command name */
|
||
if (wrapper != NULL) {
|
||
char *comm = PP(pp, comm);
|
||
#define COMSIZ sizeof(PP(pp, comm))
|
||
char buf[COMSIZ];
|
||
(void) strncpy(buf, comm, COMSIZ);
|
||
comm[0] = wrapper[0];
|
||
(void) strncpy(&comm[1], buf, COMSIZ - 2);
|
||
comm[COMSIZ - 2] = '\0';
|
||
(void) strncat(comm, &wrapper[1], COMSIZ - 1);
|
||
comm[COMSIZ - 1] = '\0';
|
||
}
|
||
/*
|
||
* Convert the process's runtime from microseconds to seconds. This
|
||
* time includes the interrupt time although that is not wanted here.
|
||
* ps(1) is similarly sloppy.
|
||
*/
|
||
cputime = (LP(pp, uticks) + LP(pp, sticks)) / 1000000;
|
||
/* calculate the base for cpu percentages */
|
||
pct = pctdouble(LP(pp, pctcpu));
|
||
/* generate "STATE" field */
|
||
switch (state = LP(pp, stat)) {
|
||
char buf[COMSIZ];
|
||
(void)strncpy(buf, comm, COMSIZ);
|
||
comm[0] = wrapper[0];
|
||
(void)strncpy(&comm[1], buf, COMSIZ - 2);
|
||
comm[COMSIZ - 2] = '\0';
|
||
(void)strncat(comm, &wrapper[1], COMSIZ - 1);
|
||
comm[COMSIZ - 1] = '\0';
|
||
}
|
||
/*
|
||
* Convert the process's runtime from microseconds to seconds. This
|
||
* time includes the interrupt time although that is not wanted here.
|
||
* ps(1) is similarly sloppy.
|
||
*/
|
||
cputime = (LP(pp, uticks) + LP(pp, sticks)) / 1000000;
|
||
/* calculate the base for cpu percentages */
|
||
pct = pctdouble(LP(pp, pctcpu));
|
||
/* generate "STATE" field */
|
||
switch (state = LP(pp, stat)) {
|
||
case LSRUN:
|
||
if (smpmode && LP(pp, tdflags) & TDF_RUNNING)
|
||
sprintf(status, "CPU%d", LP(pp, cpuid));
|
||
else
|
||
strcpy(status, "RUN");
|
||
break;
|
||
if (smpmode && LP(pp, tdflags) & TDF_RUNNING)
|
||
sprintf(status, "CPU%d", LP(pp, cpuid));
|
||
else
|
||
strcpy(status, "RUN");
|
||
break;
|
||
case LSSLEEP:
|
||
if (LP(pp, wmesg) != NULL) {
|
||
sprintf(status, "%.6s", LP(pp, wmesg));
|
||
if (LP(pp, wmesg) != NULL) {
|
||
sprintf(status, "%.6s", LP(pp, wmesg));
|
||
break;
|
||
}
|
||
/* fall through */
|
||
default:
|
||
if (state >= 0 &&
|
||
(unsigned)state < sizeof(state_abbrev) / sizeof(*state_abbrev))
|
||
sprintf(status, "%.6s", state_abbrev[(unsigned char)state]);
|
||
else
|
||
sprintf(status, "?%5d", state);
|
||
break;
|
||
}
|
||
if (PP(pp, stat) == SZOMB)
|
||
strcpy(status, "ZOMB");
|
||
/*
|
||
* idle time 0 - 31 -> nice value +21 - +52 normal time -> nice
|
||
* value -20 - +20 real time 0 - 31 -> nice value -52 - -21 thread
|
||
* 0 - 31 -> nice value -53 -
|
||
*/
|
||
switch (LP(pp, rtprio.type)) {
|
||
case RTP_PRIO_REALTIME:
|
||
xnice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio);
|
||
break;
|
||
case RTP_PRIO_IDLE:
|
||
xnice = PRIO_MAX + 1 + LP(pp, rtprio.prio);
|
||
break;
|
||
case RTP_PRIO_THREAD:
|
||
xnice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio);
|
||
break;
|
||
}
|
||
/* fall through */
|
||
default:
|
||
xnice = PP(pp, nice);
|
||
break;
|
||
}
|
||
if (state >= 0 &&
|
||
(unsigned)state < sizeof(state_abbrev) / sizeof(*state_abbrev))
|
||
sprintf(status, "%.6s", state_abbrev[(unsigned char) state]);
|
||
else
|
||
sprintf(status, "?%5d", state);
|
||
break;
|
||
}
|
||
if (PP(pp, stat) == SZOMB)
|
||
strcpy(status, "ZOMB");
|
||
/*
|
||
* idle time 0 - 31 -> nice value +21 - +52
|
||
* normal time -> nice value -20 - +20
|
||
* real time 0 - 31 -> nice value -52 - -21
|
||
* thread 0 - 31 -> nice value -53 -
|
||
*/
|
||
switch(LP(pp, rtprio.type)) {
|
||
case RTP_PRIO_REALTIME:
|
||
xnice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio);
|
||
break;
|
||
case RTP_PRIO_IDLE:
|
||
xnice = PRIO_MAX + 1 + LP(pp, rtprio.prio);
|
||
break;
|
||
case RTP_PRIO_THREAD:
|
||
xnice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio);
|
||
break;
|
||
default:
|
||
xnice = PP(pp, nice);
|
||
break;
|
||
}
|
||
/* format this entry */
|
||
snprintf(fmt, sizeof(fmt),
|
||
/* format this entry */
|
||
snprintf(fmt, sizeof(fmt),
|
||
smpmode ? smp_Proc_format : up_Proc_format,
|
||
(int)PP(pp, pid),
|
||
namelength, namelength,
|
||
get_userid(PP(pp, ruid)),
|
||
(int)((show_threads && (LP(pp, pid) == -1)) ?
|
||
LP(pp, tdprio) : LP(pp, prio)),
|
||
LP(pp, tdprio) : LP(pp, prio)),
|
||
(int)xnice,
|
||
format_k(PROCSIZE(pp)),
|
||
format_k(pagetok(VP(pp, rssize))),
|
||
... | ... | |
cmdlength,
|
||
printable(PP(pp, comm)));
|
||
/* return the result */
|
||
return(fmt);
|
||
/* return the result */
|
||
return (fmt);
|
||
}
|
||
#if 0
|
||
/*
|
||
* check_nlist(nlst) - checks the nlist to see if any symbols were not
|
||
* found. For every symbol that was not found, a one-line
|
||
* message is printed to stderr. The routine returns the
|
||
* number of symbols NOT found.
|
||
*/
|
||
static int
|
||
check_nlist(struct nlist *nlst)
|
||
{
|
||
int i;
|
||
/* check to see if we got ALL the symbols we requested */
|
||
/* this will write one line to stderr for every symbol not found */
|
||
i = 0;
|
||
while (nlst->n_name != NULL)
|
||
{
|
||
if (nlst->n_type == 0)
|
||
{
|
||
/* this one wasn't found */
|
||
(void) fprintf(stderr, "kernel: no symbol named `%s'\n",
|
||
nlst->n_name);
|
||
i = 1;
|
||
}
|
||
nlst++;
|
||
}
|
||
return(i);
|
||
}
|
||
#endif
|
||
/* comparison routines for qsort */
|
||
/*
|
||
* proc_compare - comparison function for "qsort"
|
||
* Compares the resource consumption of two processes using five
|
||
* distinct keys. The keys (in descending order of importance) are:
|
||
* percent cpu, cpu ticks, state, resident set size, total virtual
|
||
* memory usage. The process states are ordered as follows (from least
|
||
* to most important): WAIT, zombie, sleep, stop, start, run. The
|
||
* array declaration below maps a process state index into a number
|
||
* that reflects this ordering.
|
||
* proc_compare - comparison function for "qsort" Compares the resource
|
||
* consumption of two processes using five distinct keys. The keys (in
|
||
* descending order of importance) are: percent cpu, cpu ticks, state,
|
||
* resident set size, total virtual memory usage. The process states are
|
||
* ordered as follows (from least to most important): WAIT, zombie, sleep,
|
||
* stop, start, run. The array declaration below maps a process state index
|
||
* into a number that reflects this ordering.
|
||
*/
|
||
static unsigned char sorted_state[] =
|
||
{
|
||
0, /* not used */
|
||
3, /* sleep */
|
||
1, /* ABANDONED (WAIT) */
|
||
6, /* run */
|
||
5, /* start */
|
||
2, /* zombie */
|
||
4 /* stop */
|
||
0, /* not used */
|
||
3, /* sleep */
|
||
1, /* ABANDONED (WAIT) */
|
||
6, /* run */
|
||
5, /* start */
|
||
2, /* zombie */
|
||
4 /* stop */
|
||
};
|
||
|
||
#define ORDERKEY_PCTCPU \
|
||
if (lresult = (long) LP(p2, pctcpu) - (long) LP(p1, pctcpu), \
|
||
... | ... | |
if ((result = LP(p2, tdprio) - LP(p1, tdprio)) == 0)
|
||
#define ORDERKEY_RSSIZE \
|
||
if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0)
|
||
if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0)
|
||
#define ORDERKEY_MEM \
|
||
if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
|
||
... | ... | |
int
|
||
proc_compare(const void *arg1, const void *arg2)
|
||
{
|
||
const struct proc *const*pp1 = arg1;
|
||
const struct proc *const*pp2 = arg2;
|
||
const struct kinfo_proc *p1;
|
||
const struct kinfo_proc *p2;
|
||
int result;
|
||
pctcpu lresult;
|
||
/* remove one level of indirection */
|
||
p1 = *(const struct kinfo_proc *const *) pp1;
|
||
p2 = *(const struct kinfo_proc *const *) pp2;
|
||
ORDERKEY_PCTCPU
|
||
ORDERKEY_CPTICKS
|
||
ORDERKEY_STATE
|
||
ORDERKEY_PRIO
|
||
ORDERKEY_RSSIZE
|
||
ORDERKEY_MEM
|
||
{}
|
||
return(result);
|
||
const struct proc *const *pp1 = arg1;
|
||
const struct proc *const *pp2 = arg2;
|
||
const struct kinfo_proc *p1;
|
||
const struct kinfo_proc *p2;
|
||
int result;
|
||
pctcpu lresult;
|
||
/* remove one level of indirection */
|
||
p1 = *(const struct kinfo_proc *const *)pp1;
|
||
p2 = *(const struct kinfo_proc *const *)pp2;
|
||
ORDERKEY_PCTCPU
|
||
ORDERKEY_CPTICKS
|
||
ORDERKEY_STATE
|
||
ORDERKEY_PRIO
|
||
ORDERKEY_RSSIZE
|
||
ORDERKEY_MEM
|
||
{
|
||
}
|
||
return (result);
|
||
}
|
||
/* compare_size - the comparison function for sorting by total memory usage */
|
||
... | ... | |
int
|
||
compare_size(const void *arg1, const void *arg2)
|
||
{
|
||
struct proc *const *pp1 = arg1;
|
||
struct proc *const *pp2 = arg2;
|
||
struct kinfo_proc *p1;
|
||
struct kinfo_proc *p2;
|
||
int result;
|
||
pctcpu lresult;
|
||
/* remove one level of indirection */
|
||
p1 = *(struct kinfo_proc *const*) pp1;
|
||
p2 = *(struct kinfo_proc *const*) pp2;
|
||
ORDERKEY_MEM
|
||
ORDERKEY_RSSIZE
|
||
ORDERKEY_PCTCPU
|
||
ORDERKEY_CPTICKS
|
||
ORDERKEY_STATE
|
||
ORDERKEY_PRIO
|
||
{}
|
||
return(result);
|
||
struct proc *const *pp1 = arg1;
|
||
struct proc *const *pp2 = arg2;
|
||
struct kinfo_proc *p1;
|
||
struct kinfo_proc *p2;
|
||
int result;
|
||
pctcpu lresult;
|
||
/* remove one level of indirection */
|
||
p1 = *(struct kinfo_proc *const *)pp1;
|
||
p2 = *(struct kinfo_proc *const *)pp2;
|
||
ORDERKEY_MEM
|
||
ORDERKEY_RSSIZE
|
||
ORDERKEY_PCTCPU
|
||
ORDERKEY_CPTICKS
|
||
ORDERKEY_STATE
|
||
ORDERKEY_PRIO
|
||
{
|
||
}
|
||
return (result);
|
||
}
|
||
/* compare_res - the comparison function for sorting by resident set size */
|
||
... | ... | |
int
|
||
compare_res(const void *arg1, const void *arg2)
|
||
{
|
||
struct proc *const *pp1 = arg1;
|
||
struct proc *const *pp2 = arg2;
|
||
struct kinfo_proc *p1;
|
||
struct kinfo_proc *p2;
|
||
int result;
|
||
pctcpu lresult;
|
||
/* remove one level of indirection */
|
||
p1 = *(struct kinfo_proc *const*) pp1;
|
||
p2 = *(struct kinfo_proc *const*) pp2;
|
||
ORDERKEY_RSSIZE
|
||
ORDERKEY_MEM
|
||
ORDERKEY_PCTCPU
|
||
ORDERKEY_CPTICKS
|
||
ORDERKEY_STATE
|
||
ORDERKEY_PRIO
|
||
{}
|
||
return(result);
|
||
struct proc *const *pp1 = arg1;
|
||
struct proc *const *pp2 = arg2;
|
||
struct kinfo_proc *p1;
|
||
struct kinfo_proc *p2;
|
||
int result;
|
||
pctcpu lresult;
|
||
/* remove one level of indirection */
|
||
p1 = *(struct kinfo_proc *const *)pp1;
|
||
p2 = *(struct kinfo_proc *const *)pp2;
|
||
ORDERKEY_RSSIZE
|
||
ORDERKEY_MEM
|
||
ORDERKEY_PCTCPU
|
||
ORDERKEY_CPTICKS
|
||
ORDERKEY_STATE
|
||
ORDERKEY_PRIO
|
||
{
|
||
}
|
||
return (result);
|
||
}
|
||
/* compare_time - the comparison function for sorting by total cpu time */
|
||
... | ... | |
int
|
||
compare_time(const void *arg1, const void *arg2)
|
||
{
|
||
struct proc *const *pp1 = arg1;
|
||
struct proc *const *pp2 = arg2;
|
||
const struct kinfo_proc *p1;
|
||
const struct kinfo_proc *p2;
|
||
int result;
|
||
pctcpu lresult;
|
||
|
||
/* remove one level of indirection */
|
||
p1 = *(struct kinfo_proc *const*) pp1;
|
||
p2 = *(struct kinfo_proc *const*) pp2;
|
||
ORDERKEY_CPTICKS
|
||
ORDERKEY_PCTCPU
|
||
ORDERKEY_KTHREADS
|
||
ORDERKEY_KTHREADS_PRIO
|
||
ORDERKEY_STATE
|
||
ORDERKEY_PRIO
|
||
ORDERKEY_RSSIZE
|
||
ORDERKEY_MEM
|
||
{}
|
||
return(result);
|
||
}
|
||
|
||
struct proc *const *pp1 = arg1;
|
||
struct proc *const *pp2 = arg2;
|
||
const struct kinfo_proc *p1;
|
||
const struct kinfo_proc *p2;
|
||
int result;
|
||
pctcpu lresult;
|
||
/* remove one level of indirection */
|
||
p1 = *(struct kinfo_proc *const *)pp1;
|
||
p2 = *(struct kinfo_proc *const *)pp2;
|
||
ORDERKEY_CPTICKS
|
||
ORDERKEY_PCTCPU
|
||
ORDERKEY_KTHREADS
|
||
ORDERKEY_KTHREADS_PRIO
|
||
ORDERKEY_STATE
|
||
ORDERKEY_PRIO
|
||
ORDERKEY_RSSIZE
|
||
ORDERKEY_MEM
|
||
{}
|
||
return (result);
|
||
}
|
||
/* compare_prio - the comparison function for sorting by cpu percentage */
|
||
int
|
||
compare_prio(const void *arg1, const void *arg2)
|
||
{
|
||
struct proc *const *pp1 = arg1;
|
||
struct proc *const *pp2 = arg2;
|
||
const struct kinfo_proc *p1;
|
||
const struct kinfo_proc *p2;
|
||
int result;
|
||
pctcpu lresult;
|
||
/* remove one level of indirection */
|
||
p1 = *(struct kinfo_proc *const*) pp1;
|
||
p2 = *(struct kinfo_proc *const*) pp2;
|
||
ORDERKEY_KTHREADS
|
||
ORDERKEY_KTHREADS_PRIO
|
||
ORDERKEY_PRIO
|
||
ORDERKEY_CPTICKS
|
||
ORDERKEY_PCTCPU
|
||
ORDERKEY_STATE
|
||
ORDERKEY_RSSIZE
|
||
ORDERKEY_MEM
|
||
{}
|
||
return(result);
|
||
struct proc *const *pp1 = arg1;
|
||
struct proc *const *pp2 = arg2;
|
||
const struct kinfo_proc *p1;
|
||
const struct kinfo_proc *p2;
|
||
int result;
|
||
pctcpu lresult;
|
||
/* remove one level of indirection */
|
||
p1 = *(struct kinfo_proc *const *)pp1;
|
||
p2 = *(struct kinfo_proc *const *)pp2;
|
||
ORDERKEY_KTHREADS
|
||
ORDERKEY_KTHREADS_PRIO
|
||
ORDERKEY_PRIO
|
||
ORDERKEY_CPTICKS
|
||
ORDERKEY_PCTCPU
|
||
ORDERKEY_STATE
|
||
ORDERKEY_RSSIZE
|
||
ORDERKEY_MEM
|
||
{}
|
||
return (result);
|
||
}
|
||
int
|
||
compare_thr(const void *arg1, const void *arg2)
|
||
{
|
||
struct proc *const *pp1 = arg1;
|
||
struct proc *const *pp2 = arg2;
|
||
const struct kinfo_proc *p1;
|
||
const struct kinfo_proc *p2;
|
||
int result;
|
||
pctcpu lresult;
|
||
/* remove one level of indirection */
|
||
p1 = *(struct kinfo_proc *const*) pp1;
|
||
p2 = *(struct kinfo_proc *const*) pp2;
|
||
ORDERKEY_KTHREADS
|
||
ORDERKEY_KTHREADS_PRIO
|
||
ORDERKEY_CPTICKS
|
||
ORDERKEY_PCTCPU
|
||
ORDERKEY_STATE
|
||
ORDERKEY_RSSIZE
|
||
ORDERKEY_MEM
|
||
{}
|
||
return(result);
|
||
struct proc *const *pp1 = arg1;
|
||
struct proc *const *pp2 = arg2;
|
||
const struct kinfo_proc *p1;
|
||
const struct kinfo_proc *p2;
|
||
int result;
|
||
pctcpu lresult;
|
||
/* remove one level of indirection */
|
||
p1 = *(struct kinfo_proc *const *)pp1;
|
||
p2 = *(struct kinfo_proc *const *)pp2;
|
||
ORDERKEY_KTHREADS
|
||
ORDERKEY_KTHREADS_PRIO
|
||
ORDERKEY_CPTICKS
|
||
ORDERKEY_PCTCPU
|
||
ORDERKEY_STATE
|
||
ORDERKEY_RSSIZE
|
||
ORDERKEY_MEM
|
||
{}
|
||
return (result);
|
||
}
|
||
/*
|
||
* proc_owner(pid) - returns the uid that owns process "pid", or -1 if
|
||
* the process does not exist.
|
||
* It is EXTREMLY IMPORTANT that this function work correctly.
|
||
* If top runs setuid root (as in SVR4), then this function
|
||
* is the only thing that stands in the way of a serious
|
||
* security problem. It validates requests for the "kill"
|
||
* and "renice" commands.
|
||
* proc_owner(pid) - returns the uid that owns process "pid", or -1 if the
|
||
* process does not exist. It is EXTREMLY IMPORTANT that this function work
|
||
* correctly. If top runs setuid root (as in SVR4), then this function is the
|
||
* only thing that stands in the way of a serious security problem. It
|
||
* validates requests for the "kill" and "renice" commands.
|
||
*/
|
||
int
|
||
proc_owner(int pid)
|
||
{
|
||
int xcnt;
|
||
struct kinfo_proc **prefp;
|
||
struct kinfo_proc *pp;
|
||
prefp = pref;
|
||
xcnt = pref_len;
|
||
while (--xcnt >= 0)
|
||
{
|
||
pp = *prefp++;
|
||
if (PP(pp, pid) == (pid_t)pid)
|
||
{
|
||
return((int)PP(pp, ruid));
|
||
int xcnt;
|
||
struct kinfo_proc **prefp;
|
||
struct kinfo_proc *pp;
|
||
prefp = pref;
|
||
xcnt = pref_len;
|
||
while (--xcnt >= 0) {
|
||
pp = *prefp++;
|
||
if (PP(pp, pid) == (pid_t) pid) {
|
||
return ((int)PP(pp, ruid));
|
||
}
|
||
}
|
||
}
|
||
return(-1);
|
||
return (-1);
|
||
}
|
||
/*
|
||
* swapmode is based on a program called swapinfo written
|
||
* by Kevin Lahey <kml@rokkaku.atl.ga.us>.
|
||
* swapmode is based on a program called swapinfo written by Kevin Lahey
|
||
* <kml@rokkaku.atl.ga.us>.
|
||
*/
|
||
int
|
||
swapmode(int *retavail, int *retfree)
|
||
... | ... | |
n = kvm_getswapinfo(kd, swapary, 1, 0);
|
||
if (n < 0 || swapary[0].ksw_total == 0)
|
||
return(0);
|
||
return (0);
|
||
*retavail = CONVERT(swapary[0].ksw_total);
|
||
*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
|
||
n = (int)((double)swapary[0].ksw_used * 100.0 /
|
||
(double)swapary[0].ksw_total);
|
||
return(n);
|
||
return (n);
|
||
}
|